These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 35649814)

  • 1. In situ measurements of electrical resistivity of metals in a cubic multi-anvil apparatus by van der Pauw method.
    Yang F; Hu X; Fei Y
    Rev Sci Instrum; 2022 May; 93(5):053902. PubMed ID: 35649814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Note: The effect of sample insulation on experiment precision of resistivity measurement in a diamond anvil cell.
    Peng G; Han Y; Gao C; Ma Y; Wu B; Liu C; Liu B; Hu T; Wang Y; Cui X; Ren W; Liu H; Zou G
    Rev Sci Instrum; 2010 Mar; 81(3):036108. PubMed ID: 20370231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Apparatus for measuring Seebeck coefficient and electrical resistivity of small dimension samples using infrared microscope as temperature sensor.
    Jaafar WM; Snyder JE; Min G
    Rev Sci Instrum; 2013 May; 84(5):054903. PubMed ID: 23742579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ temperature measurements through i-anvils in diamond anvil cells.
    Gondé C; Bureau H; Burchard M; Henry S; Simon G; Meijer J; Kubsky S
    Rev Sci Instrum; 2010 Feb; 81(2):023902. PubMed ID: 20192504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Technique, cell assembly, and measurement of T-dependent electrical resistivity of liquid Fe devoid of contamination at P, T conditions.
    Ezenwa IC; Yoshino T
    Rev Sci Instrum; 2020 Feb; 91(2):023903. PubMed ID: 32113395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrated-fin gasket for palm cubic-anvil high pressure apparatus.
    Cheng JG; Matsubayashi K; Nagasaki S; Hisada A; Hirayama T; Hedo M; Kagi H; Uwatoko Y
    Rev Sci Instrum; 2014 Sep; 85(9):093907. PubMed ID: 25273739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Approaches to Measure the Resistivity of Grain Boundaries in Metals with High Sensitivity and Spatial Resolution: A Case Study Employing Cu.
    Bishara H; Ghidelli M; Dehm G
    ACS Appl Electron Mater; 2020 Jul; 2(7):2049-2056. PubMed ID: 32743558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wide temperature AC-calorimetry equipped in a constant loading cubic-anvil-type pressure apparatus.
    Yamauchi T; Ueda H
    Rev Sci Instrum; 2022 Feb; 93(2):023902. PubMed ID: 35232157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ measurement of electrical resistivity and Seebeck coefficient simultaneously at high temperature and high pressure.
    Yuan B; Tao Q; Zhao X; Cao K; Cui T; Wang X; Zhu P
    Rev Sci Instrum; 2014 Jan; 85(1):013904. PubMed ID: 24517779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Four-probe electrical measurements with a liquid pressure medium in a diamond anvil cell.
    Jaramillo R; Feng Y; Rosenbaum TF
    Rev Sci Instrum; 2012 Oct; 83(10):103902. PubMed ID: 23126777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement system of the Seebeck coefficient or of the electrical resistivity at high temperature.
    Rouleau O; Alleno E
    Rev Sci Instrum; 2013 Oct; 84(10):105103. PubMed ID: 24182159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and performance of tapered cubic anvil used for achieving higher pressure and larger sample cell.
    Han QG; Yang WK; Zhu PW; Ban QC; Yan N; Zhang Q
    Rev Sci Instrum; 2013 Jul; 84(7):073902. PubMed ID: 23902079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A setup for measuring the Seebeck coefficient and the electrical resistivity of bulk thermoelectric materials.
    Fu Q; Xiong Y; Zhang W; Xu D
    Rev Sci Instrum; 2017 Sep; 88(9):095111. PubMed ID: 28964241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-temperature and high-pressure cubic zirconia anvil cell for Raman spectroscopy.
    Chen J; Zheng H; Xiao W; Zeng Y
    Appl Spectrosc; 2003 Oct; 57(10):1295-9. PubMed ID: 14639761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new pressurization-insulation and pre-sealing system to improve pressure in cubic press from 6 GPa to 12 GPa.
    Wang Y; Kou Z; Zhang J; Chen S; Zhang L; Peng B; Zhao M; Jiang M; Yin X; He D
    Rev Sci Instrum; 2020 Mar; 91(3):035119. PubMed ID: 32260012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deformation T-Cup: a new multi-anvil apparatus for controlled strain-rate deformation experiments at pressures above 18 GPa.
    Hunt SA; Weidner DJ; McCormack RJ; Whitaker ML; Bailey E; Li L; Vaughan MT; Dobson DP
    Rev Sci Instrum; 2014 Aug; 85(8):085103. PubMed ID: 25173308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A miniature cubic anvil apparatus for optical measurement under high pressure.
    Kawazoe T
    Rev Sci Instrum; 2012 Mar; 83(3):035111. PubMed ID: 22462964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite element design of double bevel anvils of large volume cubic high pressure apparatus.
    Han Q; Ma H; Zhou L; Zhang C; Tian Y; Jia X; Li R
    Rev Sci Instrum; 2007 Nov; 78(11):113906. PubMed ID: 18052487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrical properties and behaviors of cuprous oxide cubes under high pressure.
    Liu CL; Sui YM; Ren WB; Ma BH; Li Y; Su NN; Wang QL; Li YQ; Zhang JK; Han YH; Ma YZ; Gao CX
    Inorg Chem; 2012 Jul; 51(13):7001-3. PubMed ID: 22721445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous generation of ultrahigh pressure and temperature to 50 GPa and 3300 K in multi-anvil apparatus.
    Xie L; Chanyshev A; Ishii T; Bondar D; Nishida K; Chen Z; Bhat S; Farla R; Higo Y; Tange Y; Su X; Yan B; Ma S; Katsura T
    Rev Sci Instrum; 2021 Oct; 92(10):103902. PubMed ID: 34717412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.