These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Averaging Local Structure to Predict the Dynamic Propensity in Supercooled Liquids. Boattini E; Smallenburg F; Filion L Phys Rev Lett; 2021 Aug; 127(8):088007. PubMed ID: 34477414 [TBL] [Abstract][Full Text] [Related]
3. Predicting Dynamic Heterogeneity in Glass-Forming Liquids by Physics-Inspired Machine Learning. Jung G; Biroli G; Berthier L Phys Rev Lett; 2023 Jun; 130(23):238202. PubMed ID: 37354408 [TBL] [Abstract][Full Text] [Related]
4. Machine Learning Using Combined Structural and Chemical Descriptors for Prediction of Methane Adsorption Performance of Metal Organic Frameworks (MOFs). Pardakhti M; Moharreri E; Wanik D; Suib SL; Srivastava R ACS Comb Sci; 2017 Oct; 19(10):640-645. PubMed ID: 28800219 [TBL] [Abstract][Full Text] [Related]
5. Predicting crop root concentration factors of organic contaminants with machine learning models. Gao F; Shen Y; Brett Sallach J; Li H; Zhang W; Li Y; Liu C J Hazard Mater; 2022 Feb; 424(Pt B):127437. PubMed ID: 34678561 [TBL] [Abstract][Full Text] [Related]
6. A comparative evaluation of the generalised predictive ability of eight machine learning algorithms across ten clinical metabolomics data sets for binary classification. Mendez KM; Reinke SN; Broadhurst DI Metabolomics; 2019 Nov; 15(12):150. PubMed ID: 31728648 [TBL] [Abstract][Full Text] [Related]
7. Comparing deep neural network and other machine learning algorithms for stroke prediction in a large-scale population-based electronic medical claims database. Chen-Ying Hung ; Wei-Chen Chen ; Po-Tsun Lai ; Ching-Heng Lin ; Chi-Chun Lee Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():3110-3113. PubMed ID: 29060556 [TBL] [Abstract][Full Text] [Related]
8. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes. Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477 [TBL] [Abstract][Full Text] [Related]
10. Predicting RNA Secondary Structure Using In Vitro and In Vivo Data. Delli Ponti R; Tartaglia GG Methods Mol Biol; 2022; 2404():43-52. PubMed ID: 34694602 [TBL] [Abstract][Full Text] [Related]
11. Machine learning random forest for predicting oncosomatic variant NGS analysis. Pellegrino E; Jacques C; Beaufils N; Nanni I; Carlioz A; Metellus P; Ouafik L Sci Rep; 2021 Nov; 11(1):21820. PubMed ID: 34750410 [TBL] [Abstract][Full Text] [Related]
12. Sensor-based machine learning for workflow detection and as key to detect expert level in laparoscopic suturing and knot-tying. Kowalewski KF; Garrow CR; Schmidt MW; Benner L; Müller-Stich BP; Nickel F Surg Endosc; 2019 Nov; 33(11):3732-3740. PubMed ID: 30790048 [TBL] [Abstract][Full Text] [Related]
13. Machine learning in predicting graft failure following kidney transplantation: A systematic review of published predictive models. Senanayake S; White N; Graves N; Healy H; Baboolal K; Kularatna S Int J Med Inform; 2019 Oct; 130():103957. PubMed ID: 31472443 [TBL] [Abstract][Full Text] [Related]
14. Graph Convolutional Neural Networks as "General-Purpose" Property Predictors: The Universality and Limits of Applicability. Korolev V; Mitrofanov A; Korotcov A; Tkachenko V J Chem Inf Model; 2020 Jan; 60(1):22-28. PubMed ID: 31860296 [TBL] [Abstract][Full Text] [Related]
15. Machine learning prediction of empirical polarity using SMILES encoding of organic solvents. Saini V Mol Divers; 2023 Oct; 27(5):2331-2343. PubMed ID: 36334165 [TBL] [Abstract][Full Text] [Related]
16. Nucleophilicity Prediction Using Graph Neural Networks. Nie W; Liu D; Li S; Yu H; Fu Y J Chem Inf Model; 2022 Sep; 62(18):4319-4328. PubMed ID: 36097394 [TBL] [Abstract][Full Text] [Related]
17. Comprehensive Study on Molecular Supervised Learning with Graph Neural Networks. Hwang D; Yang S; Kwon Y; Lee KH; Lee G; Jo H; Yoon S; Ryu S J Chem Inf Model; 2020 Dec; 60(12):5936-5945. PubMed ID: 33164522 [TBL] [Abstract][Full Text] [Related]
18. Supporting Real World Decision Making in Coronary Diseases Using Machine Learning. Kokol P; Jurman J; Bogovič T; Završnik T; Završnik J; Blažun Vošner H Inquiry; 2021; 58():46958021997338. PubMed ID: 33998303 [TBL] [Abstract][Full Text] [Related]
19. Machine learning glass caging order parameters with an artificial nested neural network. Zhang K; Li X; Jin Y; Jiang Y Soft Matter; 2022 Aug; 18(33):6270-6277. PubMed ID: 35959881 [TBL] [Abstract][Full Text] [Related]
20. Tapping on the Black Box: How Is the Scoring Power of a Machine-Learning Scoring Function Dependent on the Training Set? Su M; Feng G; Liu Z; Li Y; Wang R J Chem Inf Model; 2020 Mar; 60(3):1122-1136. PubMed ID: 32085675 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]