These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 35649865)

  • 1. Polymer informatics for QSPR prediction of tensile mechanical properties. Case study: Strength at break.
    Cravero F; Díaz MF; Ponzoni I
    J Chem Phys; 2022 May; 156(20):204903. PubMed ID: 35649865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feature Learning applied to the Estimation of Tensile Strength at Break in Polymeric Material Design.
    Cravero F; Martínez MJ; Vazquez GE; Díaz MF; Ponzoni I
    J Integr Bioinform; 2016 Nov; 13(2):286. PubMed ID: 28187416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. QSPR modelling for investigation of different properties of aminoglycoside-derived polymers using 2D descriptors.
    Khan PM; Roy K
    SAR QSAR Environ Res; 2021 Jul; 32(7):595-614. PubMed ID: 34148451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. QSPR modelling for intrinsic viscosity in polymer-solvent combinations based on density functional theory.
    Wang S; Cheng M; Zhou L; Dai Y; Dang Y; Ji X
    SAR QSAR Environ Res; 2021 May; 32(5):379-393. PubMed ID: 33823697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Refractive Index Study of a Diverse Set of Polymeric Materials by QSPR with Quantum-Chemical and Additive Descriptors.
    Erickson ME; Ngongang M; Rasulev B
    Molecules; 2020 Aug; 25(17):. PubMed ID: 32825028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative structure-imprinting factor relationship of molecularly imprinted polymers.
    Nantasenamat C; Isarankura-Na-Ayudhya C; Naenna T; Prachayasittikul V
    Biosens Bioelectron; 2007 Jun; 22(12):3309-17. PubMed ID: 17317143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feature Selection for Polymer Informatics: Evaluating Scalability and Robustness of the FS4RV
    Cravero F; Schustik SA; Martínez MJ; Vázquez GE; Díaz MF; Ponzoni I
    J Chem Inf Model; 2020 Feb; 60(2):592-603. PubMed ID: 31790226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting aqueous solubility by QSPR modeling.
    Meftahi N; Walker ML; Smith BJ
    J Mol Graph Model; 2021 Jul; 106():107901. PubMed ID: 33857890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. QSPRs for Molecular Diffusion Coefficients in Polymeric Passive Samplers: A Comparison of Simple Molecular and Quantum-mechanical Sigma-moment Descriptors.
    Lampic AM; Mackay D; Parnis JM
    Mol Inform; 2019 Aug; 38(8-9):e1800110. PubMed ID: 31063260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Artificial Intelligence in Drug Design.
    Hessler G; Baringhaus KH
    Molecules; 2018 Oct; 23(10):. PubMed ID: 30279331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Consensus QSPR modelling for the prediction of cellular response and fibrinogen adsorption to the surface of polymeric biomaterials.
    Khan PM; Roy K
    SAR QSAR Environ Res; 2019 May; 30(5):363-382. PubMed ID: 31112078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Why are some properties more difficult to predict than others? A study of QSPR models of solubility, melting point, and Log P.
    Hughes LD; Palmer DS; Nigsch F; Mitchell JB
    J Chem Inf Model; 2008 Jan; 48(1):220-32. PubMed ID: 18186622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In silico predictions of tablet density using a quantitative structure-property relationship model.
    Hayashi Y; Marumo Y; Takahashi T; Nakano Y; Kosugi A; Kumada S; Hirai D; Takayama K; Onuki Y
    Int J Pharm; 2019 Mar; 558():351-356. PubMed ID: 30641183
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of Machine Learning Methods towards Developing Interpretable Polyamide Property Prediction.
    Lee FL; Park J; Goyal S; Qaroush Y; Wang S; Yoon H; Rammohan A; Shim Y
    Polymers (Basel); 2021 Oct; 13(21):. PubMed ID: 34771210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular modeling of polymers 16. Gaseous diffusion in polymers: a quantitative structure-property relationship (QSPR) analysis.
    Patel HC; Tokarski JS; Hopfinger AJ
    Pharm Res; 1997 Oct; 14(10):1349-54. PubMed ID: 9358546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ring Repeating Unit: An Upgraded Structure Representation of Linear Condensation Polymers for Property Prediction.
    Yu M; Shi Y; Jia Q; Wang Q; Luo ZH; Yan F; Zhou YN
    J Chem Inf Model; 2023 Feb; 63(4):1177-1187. PubMed ID: 36651860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. QSPR study on refractive indices of solvents commonly used in polymer chemistry using flexible molecular descriptors.
    Fioressi SE; Bacelo DE; Cui WP; Saavedra LM; Duchowicz PR
    SAR QSAR Environ Res; 2015 Jun; 26(6):499-506. PubMed ID: 26223885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling of Glass Transition Temperatures for Polymeric Coating Materials: Application of QSPR Mixture-based Approach.
    Petrosyan LS; Sizochenko N; Leszczynski J; Rasulev B
    Mol Inform; 2019 Aug; 38(8-9):e1800150. PubMed ID: 30945811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative structure-property relationships for the calculation of the soil adsorption coefficient using machine learning algorithms with calculated chemical properties from open-source software.
    Kobayashi Y; Yoshida K
    Environ Res; 2021 May; 196():110363. PubMed ID: 33148423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemometric Modelling of Heat Release Capacity, Total Heat Release and Char Formation of Polymers to Assess Their Flammability Characteristics.
    Khan PM; Roy K
    Mol Inform; 2022 Jan; 41(1):e2000030. PubMed ID: 32463174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.