These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 35649932)

  • 1. Modeling the influence of COVID-19 protective measures on the mechanics of phonation.
    Deng JJ; Serry MA; Zañartu M; Erath BD; Peterson SD
    J Acoust Soc Am; 2022 May; 151(5):2987. PubMed ID: 35649932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of acoustic loading on an effective single mass model of the vocal folds.
    Zañartu M; Mongeau L; Wodicka GR
    J Acoust Soc Am; 2007 Feb; 121(2):1119-29. PubMed ID: 17348533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Collision Pressure and Dissipated Power Dose in a Self-Oscillating Silicone Vocal Fold Model With a Posterior Glottal Opening.
    Motie-Shirazi M; Zañartu M; Peterson SD; Mehta DD; Hillman RE; Erath BD
    J Speech Lang Hear Res; 2022 Aug; 65(8):2829-2845. PubMed ID: 35914018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cause-effect relationship between vocal fold physiology and voice production in a three-dimensional phonation model.
    Zhang Z
    J Acoust Soc Am; 2016 Apr; 139(4):1493. PubMed ID: 27106298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of Measured and Simulated Supraglottal Acoustic Waves.
    Fraile R; Evdokimova VV; Evgrafova KV; Godino-Llorente JI; Skrelin PA
    J Voice; 2016 Sep; 30(5):518-28. PubMed ID: 26377510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental analysis of the characteristics of artificial vocal folds.
    Misun V; Svancara P; Vasek M
    J Voice; 2011 May; 25(3):308-18. PubMed ID: 20359864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental study of vocal-ventricular fold oscillations in voice production.
    Matsumoto T; Kanaya M; Ishimura K; Tokuda IT
    J Acoust Soc Am; 2021 Jan; 149(1):271. PubMed ID: 33514158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational modeling of vibration-induced systemic hydration of vocal folds over a range of phonation conditions.
    Bhattacharya P; Siegmund T
    Int J Numer Method Biomed Eng; 2014 Oct; 30(10):1019-43. PubMed ID: 24760548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aerodynamically driven phonation of individual vocal folds under general anesthesia in canines.
    Heaton JT; Kobler JB; Ottensmeyer MP; Petrillo RH; Tynan MA; Mehta DD; Hillman RE; Zeitels SM
    Laryngoscope; 2020 Aug; 130(8):1980-1988. PubMed ID: 31603575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An anatomically based, time-domain acoustic model of the subglottal system for speech production.
    Ho JC; Zañartu M; Wodicka GR
    J Acoust Soc Am; 2011 Mar; 129(3):1531-47. PubMed ID: 21428517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A computational study of the effect of false vocal folds on glottal flow and vocal fold vibration during phonation.
    Zheng X; Bielamowicz S; Luo H; Mittal R
    Ann Biomed Eng; 2009 Mar; 37(3):625-42. PubMed ID: 19142730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of nodule size and stiffness on phonation threshold and collision pressures in a synthetic hemilaryngeal vocal fold model.
    Motie-Shirazi M; Zañartu M; Peterson SD; Mehta DD; Hillman RE; Erath BD
    J Acoust Soc Am; 2023 Jan; 153(1):654. PubMed ID: 36732229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Voice Differences When Wearing and Not Wearing a Surgical Mask.
    Fiorella ML; Cavallaro G; Di Nicola V; Quaranta N
    J Voice; 2023 May; 37(3):467.e1-467.e7. PubMed ID: 33712355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acoustic voice analysis in the COVID-19 era.
    Cavallaro G; Di Nicola V; Quaranta N; Fiorella ML
    Acta Otorhinolaryngol Ital; 2021 Feb; 41(1):1-5. PubMed ID: 33231205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vocal dose measures: quantifying accumulated vibration exposure in vocal fold tissues.
    Titze IR; Svec JG; Popolo PS
    J Speech Lang Hear Res; 2003 Aug; 46(4):919-32. PubMed ID: 12959470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Effect of Vocal Fold Inferior Surface Hypertrophy on Voice Function in Excised Canine Larynges.
    Wang R; Bao H; Xu X; Piotrowski D; Zhang Y; Zhuang P
    J Voice; 2018 Jul; 32(4):396-402. PubMed ID: 28826980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of vocal fold vertical stiffness variation on voice production.
    Geng B; Xue Q; Zheng X
    J Acoust Soc Am; 2016 Oct; 140(4):2856. PubMed ID: 27794296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vocal Fold Collision Speed in vivo: The Effect of Loudness.
    DeJonckere PH; Lebacq J
    J Voice; 2022 Sep; 36(5):608-621. PubMed ID: 33004227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of glottal closure and airflow in a three-dimensional phonation model: implications for vocal intensity control.
    Zhang Z
    J Acoust Soc Am; 2015 Feb; 137(2):898-910. PubMed ID: 25698022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vocal fold vibration in simulated head voice phonation in excised canine larynges.
    Shiotani A; Fukuda H; Kawaida M; Kanzaki J
    Eur Arch Otorhinolaryngol; 1996; 253(6):356-63. PubMed ID: 8858261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.