These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 35649978)

  • 1. Tiered synchronization in coupled oscillator populations with interaction delays and higher-order interactions.
    Skardal PS; Xu C
    Chaos; 2022 May; 32(5):053120. PubMed ID: 35649978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multistability in coupled oscillator systems with higher-order interactions and community structure.
    Skardal PS; Adhikari S; Restrepo JG
    Chaos; 2023 Feb; 33(2):023140. PubMed ID: 36859233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tiered synchronization in Kuramoto oscillators with adaptive higher-order interactions.
    Rajwani P; Suman A; Jalan S
    Chaos; 2023 Jun; 33(6):. PubMed ID: 37276556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multistable chimera states in a smallest population of three coupled oscillators.
    Ragavan A; Manoranjani M; Senthilkumar DV; Chandrasekar VK
    Phys Rev E; 2023 Apr; 107(4-1):044209. PubMed ID: 37198793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synchronization in populations of globally coupled oscillators with inertial effects.
    Acebron JA; Bonilla LL; Spigler R
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Sep; 62(3 Pt A):3437-54. PubMed ID: 11088845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Asymmetry-induced isolated fully synchronized state in coupled oscillator populations.
    Omel'chenko OE; Ocampo-Espindola JL; Kiss IZ
    Phys Rev E; 2021 Aug; 104(2):L022202. PubMed ID: 34525593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cooperative dynamics in coupled systems of fast and slow phase oscillators.
    Sakaguchi H; Okita T
    Phys Rev E; 2016 Feb; 93(2):022212. PubMed ID: 26986336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental observations of synchronization between two bidirectionally coupled physically dissimilar oscillators.
    Huang K; Sorrentino F; Hossein-Zadeh M
    Phys Rev E; 2020 Oct; 102(4-1):042215. PubMed ID: 33212708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase transitions in an adaptive network with the global order parameter adaptation.
    Manoranjani M; Saiprasad VR; Gopal R; Senthilkumar DV; Chandrasekar VK
    Phys Rev E; 2023 Oct; 108(4-1):044307. PubMed ID: 37978685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Position-Based Synchronization of Networked Harmonic Oscillators With Asynchronous Sampling and Communication Delays.
    Yang Y; Zhang XM; He W; Han QL; Peng C
    IEEE Trans Cybern; 2021 Aug; 51(8):4337-4347. PubMed ID: 31283517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synchronization and phase redistribution in self-replicating populations of coupled oscillators and excitable elements.
    Yu W; Wood KB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062708. PubMed ID: 26172737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Asymmetry in pulse-coupled oscillators with delay.
    Zeitler M; Daffertshofer A; Gielen CC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 2):065203. PubMed ID: 19658549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synchronization of delay-coupled nonlinear oscillators: an approach based on the stability analysis of synchronized equilibria.
    Michiels W; Nijmeijer H
    Chaos; 2009 Sep; 19(3):033110. PubMed ID: 19791990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcritical riddling in a system of coupled maps.
    Popovych O; Maistrenko Y; Mosekilde E; Pikovsky A; Kurths J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 2):036201. PubMed ID: 11308735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synchronization between two weakly coupled delay-line oscillators.
    Levy EC; Horowitz M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 2):066209. PubMed ID: 23368026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noise stability of synchronization and optimal network structures.
    Katoh Y; Kori H
    Chaos; 2020 Jan; 30(1):013148. PubMed ID: 32013498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synchronization dynamics in the presence of coupling delays and phase shifts.
    Jörg DJ; Morelli LG; Ares S; Jülicher F
    Phys Rev Lett; 2014 May; 112(17):174101. PubMed ID: 24836248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peculiarities of the transitions to synchronization in coupled systems with amplitude death.
    Astakhov V; Koblyanskii S; Shabunin A; Kapitaniak T
    Chaos; 2011 Jun; 21(2):023127. PubMed ID: 21721769
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Collective synchronization through noise cancellation.
    Worsfold J; Rogers T
    Phys Rev E; 2024 Feb; 109(2-1):024218. PubMed ID: 38491608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synchronization transition from chaos to limit cycle oscillations when a locally coupled chaotic oscillator grid is coupled globally to another chaotic oscillator.
    Godavarthi V; Kasthuri P; Mondal S; Sujith RI; Marwan N; Kurths J
    Chaos; 2020 Mar; 30(3):033121. PubMed ID: 32237762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.