BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 35650252)

  • 1. Brain tumor image generation using an aggregation of GAN models with style transfer.
    Mukherkjee D; Saha P; Kaplun D; Sinitca A; Sarkar R
    Sci Rep; 2022 Jun; 12(1):9141. PubMed ID: 35650252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesizing anonymized and labeled TOF-MRA patches for brain vessel segmentation using generative adversarial networks.
    Kossen T; Subramaniam P; Madai VI; Hennemuth A; Hildebrand K; Hilbert A; Sobesky J; Livne M; Galinovic I; Khalil AA; Fiebach JB; Frey D
    Comput Biol Med; 2021 Apr; 131():104254. PubMed ID: 33618105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A GAN-based image synthesis method for skin lesion classification.
    Qin Z; Liu Z; Zhu P; Xue Y
    Comput Methods Programs Biomed; 2020 Oct; 195():105568. PubMed ID: 32526536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generative Adversarial Networks in Medical Image Processing.
    Gong M; Chen S; Chen Q; Zeng Y; Zhang Y
    Curr Pharm Des; 2021; 27(15):1856-1868. PubMed ID: 33238866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing classification of cells procured from bone marrow aspirate smears using generative adversarial networks and sequential convolutional neural network.
    Hazra D; Byun YC; Kim WJ
    Comput Methods Programs Biomed; 2022 Sep; 224():107019. PubMed ID: 35878483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SpeckleGAN: a generative adversarial network with an adaptive speckle layer to augment limited training data for ultrasound image processing.
    Bargsten L; Schlaefer A
    Int J Comput Assist Radiol Surg; 2020 Sep; 15(9):1427-1436. PubMed ID: 32556953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generating 3D TOF-MRA volumes and segmentation labels using generative adversarial networks.
    Subramaniam P; Kossen T; Ritter K; Hennemuth A; Hildebrand K; Hilbert A; Sobesky J; Livne M; Galinovic I; Khalil AA; Fiebach JB; Frey D; Madai VI
    Med Image Anal; 2022 May; 78():102396. PubMed ID: 35231850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Image generation by GAN and style transfer for agar plate image segmentation.
    Andreini P; Bonechi S; Bianchini M; Mecocci A; Scarselli F
    Comput Methods Programs Biomed; 2020 Feb; 184():105268. PubMed ID: 31891902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Super-resolution of brain tumor MRI images based on deep learning.
    Zhou Z; Ma A; Feng Q; Wang R; Cheng L; Chen X; Yang X; Liao K; Miao Y; Qiu Y
    J Appl Clin Med Phys; 2022 Nov; 23(11):e13758. PubMed ID: 36107021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systematic Review of Generative Adversarial Networks (GANs) for Medical Image Classification and Segmentation.
    Jeong JJ; Tariq A; Adejumo T; Trivedi H; Gichoya JW; Banerjee I
    J Digit Imaging; 2022 Apr; 35(2):137-152. PubMed ID: 35022924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cross-domain attention-guided generative data augmentation for medical image analysis with limited data.
    Xu Z; Tang J; Qi C; Yao D; Liu C; Zhan Y; Lukasiewicz T
    Comput Biol Med; 2024 Jan; 168():107744. PubMed ID: 38006826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BrainGAN: Brain MRI Image Generation and Classification Framework Using GAN Architectures and CNN Models.
    Alrashedy HHN; Almansour AF; Ibrahim DM; Hammoudeh MAA
    Sensors (Basel); 2022 Jun; 22(11):. PubMed ID: 35684918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Augmenting healthy brain magnetic resonance images using generative adversarial networks.
    Alrumiah SS; Alrebdi N; Ibrahim DM
    PeerJ Comput Sci; 2023; 9():e1318. PubMed ID: 37346635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generative adversarial network based synthetic data training model for lightweight convolutional neural networks.
    Rather IH; Kumar S
    Multimed Tools Appl; 2023 May; ():1-23. PubMed ID: 37362646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-content image generation for drug discovery using generative adversarial networks.
    Hussain S; Anees A; Das A; Nguyen BP; Marzuki M; Lin S; Wright G; Singhal A
    Neural Netw; 2020 Dec; 132():353-363. PubMed ID: 32977280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GAN-Based Image Colorization for Self-Supervised Visual Feature Learning.
    Treneska S; Zdravevski E; Pires IM; Lameski P; Gievska S
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Medical image synthesis via conditional GANs: Application to segmenting brain tumours.
    Hamghalam M; Simpson AL
    Comput Biol Med; 2024 Mar; 170():107982. PubMed ID: 38266466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parallel Connected Generative Adversarial Network with Quadratic Operation for SAR Image Generation and Application for Classification.
    He C; Xiong D; Zhang Q; Liao M
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30791500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Learning brain representation using recurrent Wasserstein generative adversarial net.
    Qiang N; Dong Q; Liang H; Li J; Zhang S; Zhang C; Ge B; Sun Y; Gao J; Liu T; Yue H; Zhao S
    Comput Methods Programs Biomed; 2022 Aug; 223():106979. PubMed ID: 35792364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A generative adversarial network for synthetization of regions of interest based on digital mammograms.
    Oyelade ON; Ezugwu AE; Almutairi MS; Saha AK; Abualigah L; Chiroma H
    Sci Rep; 2022 Apr; 12(1):6166. PubMed ID: 35418566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.