These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 35650346)

  • 1. Automated image quality appraisal through partial least squares discriminant analysis.
    Ramani RG; Shanthamalar JJ
    Int J Comput Assist Radiol Surg; 2022 Jul; 17(7):1367-1377. PubMed ID: 35650346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optic Disc Boundary and Vessel Origin Segmentation of Fundus Images.
    Roychowdhury S; Koozekanani DD; Kuchinka SN; Parhi KK
    IEEE J Biomed Health Inform; 2016 Nov; 20(6):1562-1574. PubMed ID: 26316237
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optic disc detection and segmentation using saliency mask in retinal fundus images.
    Zaaboub N; Sandid F; Douik A; Solaiman B
    Comput Biol Med; 2022 Nov; 150():106067. PubMed ID: 36150251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scale-space approximated convolutional neural networks for retinal vessel segmentation.
    Noh KJ; Park SJ; Lee S
    Comput Methods Programs Biomed; 2019 Sep; 178():237-246. PubMed ID: 31416552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SegR-Net: A deep learning framework with multi-scale feature fusion for robust retinal vessel segmentation.
    Ryu J; Rehman MU; Nizami IF; Chong KT
    Comput Biol Med; 2023 Sep; 163():107132. PubMed ID: 37343468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of image quality on color fundus retinal images using the automatic retinal image analysis.
    Shi C; Lee J; Wang G; Dou X; Yuan F; Zee B
    Sci Rep; 2022 Jun; 12(1):10455. PubMed ID: 35729197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blood Vessel Segmentation of Fundus Images by Major Vessel Extraction and Subimage Classification.
    Roychowdhury S; Koozekanani DD; Parhi KK
    IEEE J Biomed Health Inform; 2015 May; 19(3):1118-28. PubMed ID: 25014980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A location-to-segmentation strategy for automatic exudate segmentation in colour retinal fundus images.
    Liu Q; Zou B; Chen J; Ke W; Yue K; Chen Z; Zhao G
    Comput Med Imaging Graph; 2017 Jan; 55():78-86. PubMed ID: 27665058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Artery vein classification in fundus images using serially connected U-Nets.
    Karlsson RA; Hardarson SH
    Comput Methods Programs Biomed; 2022 Apr; 216():106650. PubMed ID: 35139461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DAVS-NET: Dense Aggregation Vessel Segmentation Network for retinal vasculature detection in fundus images.
    Raza M; Naveed K; Akram A; Salem N; Afaq A; Madni HA; Khan MAU; Din MZ
    PLoS One; 2021; 16(12):e0261698. PubMed ID: 34972109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of automatic retinal vessel segmentation method in fundus images via convolutional neural networks.
    Joonyoung Song ; Boreom Lee
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():681-684. PubMed ID: 29059964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of suitable fundus images using automated quality assessment methods.
    Şevik U; Köse C; Berber T; Erdöl H
    J Biomed Opt; 2014 Apr; 19(4):046006. PubMed ID: 24718384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blood vessel segmentation in color fundus images based on regional and Hessian features.
    Shah SAA; Tang TB; Faye I; Laude A
    Graefes Arch Clin Exp Ophthalmol; 2017 Aug; 255(8):1525-1533. PubMed ID: 28474130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent Advancements in Retinal Vessel Segmentation.
    L Srinidhi C; Aparna P; Rajan J
    J Med Syst; 2017 Apr; 41(4):70. PubMed ID: 28285460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast and Robust Exudate Detection in Retinal Fundus Images Using Extreme Learning Machine Autoencoders and Modified KAZE Features.
    Mohan NJ; Murugan R; Goel T; Roy P
    J Digit Imaging; 2022 Jun; 35(3):496-513. PubMed ID: 35141807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Segmentation of retinal vessels in fundus images based on U-Net with self-calibrated convolutions and spatial attention modules.
    Rong Y; Xiong Y; Li C; Chen Y; Wei P; Wei C; Fan Z
    Med Biol Eng Comput; 2023 Jul; 61(7):1745-1755. PubMed ID: 36899285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic segmentation of pigment deposits in retinal fundus images of Retinitis Pigmentosa.
    Brancati N; Frucci M; Gragnaniello D; Riccio D; Di Iorio V; Di Perna L
    Comput Med Imaging Graph; 2018 Jun; 66():73-81. PubMed ID: 29573581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic fundus image classification for computer-aided diagonsis.
    Lu S; Liu J; Lim JH; Zhang Z; Meng TN; Wong WK; Li H; Wong TY
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1453-6. PubMed ID: 19963750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TUnet-LBF: Retinal fundus image fine segmentation model based on transformer Unet network and LBF.
    Zhang H; Ni W; Luo Y; Feng Y; Song R; Wang X
    Comput Biol Med; 2023 Jun; 159():106937. PubMed ID: 37084640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retinal Microaneurysms Detection Using Gradient Vector Analysis and Class Imbalance Classification.
    Dai B; Wu X; Bu W
    PLoS One; 2016; 11(8):e0161556. PubMed ID: 27564376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.