These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 35650412)
21. Roles of ethylene and jasmonic acid in systemic induced defense in tomato (Solanum lycopersicum) against Helicoverpa zea. Tian D; Peiffer M; De Moraes CM; Felton GW Planta; 2014 Mar; 239(3):577-89. PubMed ID: 24271004 [TBL] [Abstract][Full Text] [Related]
22. Spodoptera frugiperda Caterpillars Suppress Herbivore-Induced Volatile Emissions in Maize. De Lange ES; Laplanche D; Guo H; Xu W; Vlimant M; Erb M; Ton J; Turlings TCJ J Chem Ecol; 2020 Mar; 46(3):344-360. PubMed ID: 32002720 [TBL] [Abstract][Full Text] [Related]
23. Symbiotic polydnavirus of a parasite manipulates caterpillar and plant immunity. Tan CW; Peiffer M; Hoover K; Rosa C; Acevedo FE; Felton GW Proc Natl Acad Sci U S A; 2018 May; 115(20):5199-5204. PubMed ID: 29712862 [TBL] [Abstract][Full Text] [Related]
24. Spodoptera litura-mediated chemical defense is differentially modulated in older and younger systemic leaves of Solanum lycopersicum. Kundu A; Mishra S; Vadassery J Planta; 2018 Oct; 248(4):981-997. PubMed ID: 29987372 [TBL] [Abstract][Full Text] [Related]
25. Tomato Chemical Defenses Intensify Corn Earworm (Helicoverpa zea) Mortality from Opportunistic Bacterial Pathogens. Mason CJ; Peiffer M; Hoover K; Felton G J Chem Ecol; 2023 Jun; 49(5-6):313-324. PubMed ID: 36964896 [TBL] [Abstract][Full Text] [Related]
26. Silencing the alarm: an insect salivary enzyme closes plant stomata and inhibits volatile release. Lin PA; Chen Y; Chaverra-Rodriguez D; Heu CC; Zainuddin NB; Sidhu JS; Peiffer M; Tan CW; Helms A; Kim D; Ali J; Rasgon JL; Lynch J; Anderson CT; Felton GW New Phytol; 2021 Apr; 230(2):793-803. PubMed ID: 33459359 [TBL] [Abstract][Full Text] [Related]
28. Role of trichomes in defense against herbivores: comparison of herbivore response to woolly and hairless trichome mutants in tomato (Solanum lycopersicum). Tian D; Tooker J; Peiffer M; Chung SH; Felton GW Planta; 2012 Oct; 236(4):1053-66. PubMed ID: 22552638 [TBL] [Abstract][Full Text] [Related]
29. Ablation of caterpillar labial salivary glands: technique for determining the role of saliva in insect-plant interactions. Musser RO; Farmer E; Peiffer M; Williams SA; Felton GW J Chem Ecol; 2006 May; 32(5):981-92. PubMed ID: 16739018 [TBL] [Abstract][Full Text] [Related]
30. Asymmetry in Herbivore Effector Responses: Caterpillar Frass Effectors Reduce Performance of a Subsequent Herbivore. Ray S; Helms AM; Matulis NL; Davidson-Lowe E; Grisales W; Ali JG J Chem Ecol; 2020 Jan; 46(1):76-83. PubMed ID: 31845135 [TBL] [Abstract][Full Text] [Related]
31. Herbivore cues from the fall armyworm (Spodoptera frugiperda) larvae trigger direct defenses in maize. Chuang WP; Ray S; Acevedo FE; Peiffer M; Felton GW; Luthe DS Mol Plant Microbe Interact; 2014 May; 27(5):461-70. PubMed ID: 24329171 [TBL] [Abstract][Full Text] [Related]
32. Phytohormones in Fall Armyworm Saliva Modulate Defense Responses in Plants. Acevedo FE; Smith P; Peiffer M; Helms A; Tooker J; Felton GW J Chem Ecol; 2019 Jul; 45(7):598-609. PubMed ID: 31218595 [TBL] [Abstract][Full Text] [Related]
33. Phenotypic plasticity of plant response to herbivore eggs: effects on resistance to caterpillars and plant development. Pashalidou FG; Lucas-Barbosa D; van Loon JJ; Dicke M; Fatouros NE Ecology; 2013 Mar; 94(3):702-13. PubMed ID: 23687896 [TBL] [Abstract][Full Text] [Related]
34. Silicon-based anti-herbivore defense in tropical tree seedlings. Klotz M; Schaller J; Engelbrecht BMJ Front Plant Sci; 2023; 14():1250868. PubMed ID: 37900768 [TBL] [Abstract][Full Text] [Related]
35. Defense suppression benefits herbivores that have a monopoly on their feeding site but can backfire within natural communities. Glas JJ; Alba JM; Simoni S; Villarroel CA; Stoops M; Schimmel BC; Schuurink RC; Sabelis MW; Kant MR BMC Biol; 2014 Nov; 12():98. PubMed ID: 25403155 [TBL] [Abstract][Full Text] [Related]
36. Herbivore performance and plant defense after sequential attacks by inducing and suppressing herbivores. de Oliveira EF; Pallini A; Janssen A Insect Sci; 2019 Feb; 26(1):108-118. PubMed ID: 28636085 [TBL] [Abstract][Full Text] [Related]
37. Overcompensation of herbivore reproduction through hyper-suppression of plant defenses in response to competition. Schimmel BCJ; Ataide LMS; Chafi R; Villarroel CA; Alba JM; Schuurink RC; Kant MR New Phytol; 2017 Jun; 214(4):1688-1701. PubMed ID: 28386959 [TBL] [Abstract][Full Text] [Related]
38. MAPK-dependent JA and SA signalling in Nicotiana attenuata affects plant growth and fitness during competition with conspecifics. Meldau S; Ullman-Zeunert L; Govind G; Bartram S; Baldwin IT BMC Plant Biol; 2012 Nov; 12():213. PubMed ID: 23148462 [TBL] [Abstract][Full Text] [Related]
39. Chemical and mechanical defenses vary among maternal lines and leaf ages in Verbascum thapsus L. (Scrophulariaceae) and reduce palatability to a generalist insect. Alba C; Bowers MD; Blumenthal D; Hufbauer RA PLoS One; 2014; 9(7):e104889. PubMed ID: 25127229 [TBL] [Abstract][Full Text] [Related]
40. Constitutive and herbivore-induced structural defenses are compromised by inbreeding in Solanum carolinense (Solanaceae). Kariyat RR; Balogh CM; Moraski RP; De Moraes CM; Mescher MC; Stephenson AG Am J Bot; 2013 Jun; 100(6):1014-21. PubMed ID: 23545253 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]