BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 35650448)

  • 1. Predictive Design and Analysis of Drug Transport by Multiscale Computational Models Under Uncertainty.
    Akalın AA; Dedekargınoğlu B; Choi SR; Han B; Ozcelikkale A
    Pharm Res; 2023 Feb; 40(2):501-523. PubMed ID: 35650448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of multiscale computational approaches for rational design of conventional and nanoparticle oral drug delivery systems.
    Haddish-Berhane N; Rickus JL; Haghighi K
    Int J Nanomedicine; 2007; 2(3):315-31. PubMed ID: 18019831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiscale Modeling in the Clinic: Drug Design and Development.
    Clancy CE; An G; Cannon WR; Liu Y; May EE; Ortoleva P; Popel AS; Sluka JP; Su J; Vicini P; Zhou X; Eckmann DM
    Ann Biomed Eng; 2016 Sep; 44(9):2591-610. PubMed ID: 26885640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiscale Computational Modeling of Vascular Adaptation: A Systems Biology Approach Using Agent-Based Models.
    Corti A; Colombo M; Migliavacca F; Rodriguez Matas JF; Casarin S; Chiastra C
    Front Bioeng Biotechnol; 2021; 9():744560. PubMed ID: 34796166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiscale modeling of protein membrane interactions for nanoparticle targeting in drug delivery.
    Eckmann DM; Bradley RP; Kandy SK; Patil K; Janmey PA; Radhakrishnan R
    Curr Opin Struct Biol; 2020 Oct; 64():104-110. PubMed ID: 32731155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mathematical and computational modeling of nano-engineered drug delivery systems.
    Shamsi M; Mohammadi A; Manshadi MKD; Sanati-Nezhad A
    J Control Release; 2019 Aug; 307():150-165. PubMed ID: 31229474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rational nanoparticle design: Optimization using insights from experiments and mathematical models.
    Richfield O; Piotrowski-Daspit AS; Shin K; Saltzman WM
    J Control Release; 2023 Aug; 360():772-783. PubMed ID: 37442201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ignoring the modeling approaches: Towards the shadowy paths in nanomedicine.
    Hassanzadeh P; Atyabi F; Dinarvand R
    J Control Release; 2018 Jun; 280():58-75. PubMed ID: 29723612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlled anti-cancer drug release through advanced nano-drug delivery systems: Static and dynamic targeting strategies.
    Moradi Kashkooli F; Soltani M; Souri M
    J Control Release; 2020 Nov; 327():316-349. PubMed ID: 32800878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Applying artificial intelligence and computational modeling to nanomedicine.
    Hamilton S; Kingston BR
    Curr Opin Biotechnol; 2024 Feb; 85():103043. PubMed ID: 38091874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Silico Models for Nanomedicine: Recent Developments.
    Mascheroni P; Schrefler BA
    Curr Med Chem; 2018; 25(34):4192-4207. PubMed ID: 28911299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vivarium: an interface and engine for integrative multiscale modeling in computational biology.
    Agmon E; Spangler RK; Skalnik CJ; Poole W; Peirce SM; Morrison JH; Covert MW
    Bioinformatics; 2022 Mar; 38(7):1972-1979. PubMed ID: 35134830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling of nanoparticle transport through the female reproductive tract for the treatment of infectious diseases.
    Sims LB; Miller HA; Halwes ME; Steinbach-Rankins JM; Frieboes HB
    Eur J Pharm Biopharm; 2019 May; 138():37-47. PubMed ID: 30195726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiologically Based Pharmacokinetic Modeling of Nanoparticle Biodistribution: A Review of Existing Models, Simulation Software, and Data Analysis Tools.
    Kutumova EO; Akberdin IR; Kiselev IN; Sharipov RN; Egorova VS; Syrocheva AO; Parodi A; Zamyatnin AA; Kolpakov FA
    Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36293410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiscale modeling of mucosal immune responses.
    Mei Y; Abedi V; Carbo A; Zhang X; Lu P; Philipson C; Hontecillas R; Hoops S; Liles N; Bassaganya-Riera J
    BMC Bioinformatics; 2015; 16 Suppl 12(Suppl 12):S2. PubMed ID: 26329787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental Quantification of Interactions Between Drug Delivery Systems and Cells In Vitro: A Guide for Preclinical Nanomedicine Evaluation.
    Cevaal PM; Roche M; Lewin SR; Caruso F; Faria M
    J Vis Exp; 2022 Sep; (187):. PubMed ID: 36282696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Vision for the Future of Multiscale Modeling.
    Capone M; Romanelli M; Castaldo D; Parolin G; Bello A; Gil G; Vanzan M
    ACS Phys Chem Au; 2024 May; 4(3):202-225. PubMed ID: 38800726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How can machine learning and multiscale modeling benefit ocular drug development?
    Wang N; Zhang Y; Wang W; Ye Z; Chen H; Hu G; Ouyang D
    Adv Drug Deliv Rev; 2023 May; 196():114772. PubMed ID: 36906232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent advances in multiscale CFD modelling of cooling processes and systems for the agrifood industry.
    Ajani CK; Zhu Z; Sun DW
    Crit Rev Food Sci Nutr; 2021; 61(15):2455-2470. PubMed ID: 32880478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a Physiologically-Based Mathematical Model for Quantifying Nanoparticle Distribution in Tumors.
    Dogra P; Chuang YL; Butner JD; Cristini V; Wang Z
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2852-2855. PubMed ID: 31946487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.