These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 35650448)

  • 61. Rational design of liposomal drug delivery systems, a review: Combined experimental and computational studies of lipid membranes, liposomes and their PEGylation.
    Bunker A; Magarkar A; Viitala T
    Biochim Biophys Acta; 2016 Oct; 1858(10):2334-2352. PubMed ID: 26915693
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Rational design of nanosystems for simultaneous drug delivery and photodynamic therapy by quantum mechanical modeling.
    Kaviani M; Di Valentin C
    Nanoscale; 2019 Sep; 11(33):15576-15588. PubMed ID: 31403155
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A computational systems biology software platform for multiscale modeling and simulation: integrating whole-body physiology, disease biology, and molecular reaction networks.
    Eissing T; Kuepfer L; Becker C; Block M; Coboeken K; Gaub T; Goerlitz L; Jaeger J; Loosen R; Ludewig B; Meyer M; Niederalt C; Sevestre M; Siegmund HU; Solodenko J; Thelen K; Telle U; Weiss W; Wendl T; Willmann S; Lippert J
    Front Physiol; 2011; 2():4. PubMed ID: 21483730
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Reliable and efficient parameter estimation using approximate continuum limit descriptions of stochastic models.
    Simpson MJ; Baker RE; Buenzli PR; Nicholson R; Maclaren OJ
    J Theor Biol; 2022 Sep; 549():111201. PubMed ID: 35752285
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Integrating Multiscale Modeling with Drug Effects for Cancer Treatment.
    Li XL; Oduola WO; Qian L; Dougherty ER
    Cancer Inform; 2015; 14(Suppl 5):21-31. PubMed ID: 26792977
    [TBL] [Abstract][Full Text] [Related]  

  • 66. In Silico Clinical Trials: Is It Possible?
    Arsène S; Parès Y; Tixier E; Granjeon-Noriot S; Martin B; Bruezière L; Couty C; Courcelles E; Kahoul R; Pitrat J; Go N; Monteiro C; Kleine-Schultjann J; Jemai S; Pham E; Boissel JP; Kulesza A
    Methods Mol Biol; 2024; 2716():51-99. PubMed ID: 37702936
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Assessing drug distribution in tissues expressing P-glycoprotein using physiologically based pharmacokinetic modeling: identification of important model parameters through global sensitivity analysis.
    Fenneteau F; Li J; Nekka F
    J Pharmacokinet Pharmacodyn; 2009 Dec; 36(6):495-522. PubMed ID: 19847628
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Protein Nanoparticles: Uniting the Power of Proteins with Engineering Design Approaches.
    Habibi N; Mauser A; Ko Y; Lahann J
    Adv Sci (Weinh); 2022 Mar; 9(8):e2104012. PubMed ID: 35077010
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Kinetics of Nanomedicine in Tumor Spheroid as an
    Roy SM; Garg V; Barman S; Ghosh C; Maity AR; Ghosh SK
    Front Bioeng Biotechnol; 2021; 9():785937. PubMed ID: 34926430
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Computer-Aided Design of Nanoparticles for Transdermal Drug Delivery.
    Gupta R; Rai B
    Methods Mol Biol; 2020; 2059():225-237. PubMed ID: 31435925
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Nanoformulations for Drug Delivery: Safety, Toxicity, and Efficacy.
    Lopalco A; Denora N
    Methods Mol Biol; 2018; 1800():347-365. PubMed ID: 29934902
    [TBL] [Abstract][Full Text] [Related]  

  • 72. In vitro microfluidic models of tumor microenvironment to screen transport of drugs and nanoparticles.
    Ozcelikkale A; Moon HR; Linnes M; Han B
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2017 Sep; 9(5):. PubMed ID: 28198106
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The Advancement and Obstacles in Improving the Stability of Nanocarriers for Precision Drug Delivery in the Field of Nanomedicine.
    Mahajan K; Bhattacharya S
    Curr Top Med Chem; 2024; 24(8):686-721. PubMed ID: 38409730
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Computational approaches to the rational design of nanoemulsions, polymeric micelles, and dendrimers for drug delivery.
    Huynh L; Neale C; Pomès R; Allen C
    Nanomedicine; 2012 Jan; 8(1):20-36. PubMed ID: 21669300
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Predictive oncology: a review of multidisciplinary, multiscale in silico modeling linking phenotype, morphology and growth.
    Sanga S; Frieboes HB; Zheng X; Gatenby R; Bearer EL; Cristini V
    Neuroimage; 2007; 37 Suppl 1(Suppl 1):S120-34. PubMed ID: 17629503
    [TBL] [Abstract][Full Text] [Related]  

  • 76. In silico models of cancer.
    Edelman LB; Eddy JA; Price ND
    Wiley Interdiscip Rev Syst Biol Med; 2010; 2(4):438-459. PubMed ID: 20836040
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Challenges in modelling nanoparticles for drug delivery.
    Barnard AS
    J Phys Condens Matter; 2016 Jan; 28(2):023002. PubMed ID: 26682622
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Multifunctional Nanocarriers for diagnostics, drug delivery and targeted treatment across blood-brain barrier: perspectives on tracking and neuroimaging.
    Bhaskar S; Tian F; Stoeger T; Kreyling W; de la Fuente JM; Grazú V; Borm P; Estrada G; Ntziachristos V; Razansky D
    Part Fibre Toxicol; 2010 Mar; 7():3. PubMed ID: 20199661
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Mathematical modeling of the protein corona: implications for nanoparticulate delivery systems.
    Dell'Orco D; Lundqvist M; Linse S; Cedervall T
    Nanomedicine (Lond); 2014 May; 9(6):851-8. PubMed ID: 24981650
    [TBL] [Abstract][Full Text] [Related]  

  • 80. In silico modeling of endocrine organ-on-a-chip systems.
    Sung B
    Math Biosci; 2022 Oct; 352():108900. PubMed ID: 36075288
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.