These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 35650510)

  • 1. High-Performance and Stable (Ag, Cd)-Containing ZnSb Thermoelectric Compounds.
    Yang S; Deng T; Qiu P; Xing T; Cheng J; Jin Z; Li P; Shi X; Chen L
    ACS Appl Mater Interfaces; 2022 Jun; ():. PubMed ID: 35650510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aliovalent Dilute Doping and Nano-Moiré Fringe Advance the Structural Stability and Thermoelectric Performance in
    Jen IL; Wang KK; Wu HJ
    Adv Sci (Weinh); 2022 Sep; 9(26):2201802. PubMed ID: 36177250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unexpected high-temperature stability of β-Zn4Sb3 opens the door to enhanced thermoelectric performance.
    Lin J; Li X; Qiao G; Wang Z; Carrete J; Ren Y; Ma L; Fei Y; Yang B; Lei L; Li J
    J Am Chem Soc; 2014 Jan; 136(4):1497-504. PubMed ID: 24364700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced Thermoelectric Performance of
    Kannan VP; Lourdhusamy V; Paulraj I; Liu CJ; Madanagurusamy S
    ACS Appl Mater Interfaces; 2023 Oct; 15(40):47058-47069. PubMed ID: 37772960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-pressure single crystal X-ray diffraction study of thermoelectric ZnSb and β-Zn
    Borup MA; Blichfeld AB; Madsen SR; Iversen BB
    Dalton Trans; 2016 Sep; 45(38):15097-15103. PubMed ID: 27722338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contradicting Influence of Zn Alloying on Electronic and Thermal Properties of a YbCd
    Kwon SH; Kim SI; Shin WH; Hwang SM; Lee K; Seo WS; Kim HS
    ChemistryOpen; 2023 Mar; 12(3):e202200263. PubMed ID: 36855332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved Thermoelectric Performance of Tellurium by Alloying with a Small Concentration of Selenium to Decrease Lattice Thermal Conductivity.
    Saparamadu U; Li C; He R; Zhu H; Ren Z; Mao J; Song S; Sun J; Chen S; Zhang Q; Nielsch K; Broido D; Ren Z
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):511-516. PubMed ID: 30525424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transport Properties of CdSb Alloys with a Promising Thermoelectric Performance.
    Zhou B; Sun C; Wang X; Bu Z; Li W; Ang R; Pei Y
    ACS Appl Mater Interfaces; 2019 Jul; 11(30):27098-27103. PubMed ID: 31283881
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Rabøl Jørgensen L; Moeslund Zeuthen C; Andersen Borup K; Roelsgaard M; Lau Nyborg Broge N; Beyer J; Brummerstedt Iversen B
    IUCrJ; 2020 Jan; 7(Pt 1):100-104. PubMed ID: 31949909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intrinsically High Thermoelectric Performance in AgInSe
    Qiu P; Qin Y; Zhang Q; Li R; Yang J; Song Q; Tang Y; Bai S; Shi X; Chen L
    Adv Sci (Weinh); 2018 Mar; 5(3):1700727. PubMed ID: 29593972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Realizing High Thermoelectric Performance in Sb-Doped Ag
    Zhu T; Bai H; Zhang J; Tan G; Yan Y; Liu W; Su X; Wu J; Zhang Q; Tang X
    ACS Appl Mater Interfaces; 2020 Sep; 12(35):39425-39433. PubMed ID: 32805902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple Effects Promoting the Thermoelectric Performance of SnTe by Alloying with CuSbTe
    He W; Li N; Wang H; Wang G; Wang G; Lu X; Zhou X
    ACS Appl Mater Interfaces; 2021 Nov; 13(44):52775-52782. PubMed ID: 34702031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stability and Thermoelectric Properties of Zn
    Fischer KFF; Bjerg JH; Jørgensen LR; Iversen BB
    ACS Appl Mater Interfaces; 2021 Sep; 13(38):45708-45716. PubMed ID: 34544237
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anisotropic thermoelectric properties of layered compounds in SnX2 (X = S, Se): a promising thermoelectric material.
    Sun BZ; Ma Z; He C; Wu K
    Phys Chem Chem Phys; 2015 Nov; 17(44):29844-53. PubMed ID: 26486877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Doubled Thermoelectric Figure of Merit in p-Type β-FeSi
    Du X; Qiu P; Chai J; Mao T; Hu P; Yang J; Sun YY; Shi X; Chen L
    ACS Appl Mater Interfaces; 2020 Mar; 12(11):12901-12909. PubMed ID: 32096980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superior performance and high service stability for GeTe-based thermoelectric compounds.
    Xing T; Song Q; Qiu P; Zhang Q; Xia X; Liao J; Liu R; Huang H; Yang J; Bai S; Ren D; Shi X; Chen L
    Natl Sci Rev; 2019 Oct; 6(5):944-954. PubMed ID: 34691955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergistically Enhanced Thermoelectric Performance of Cu
    Cheng X; Yang D; Su X; Xie H; Liu W; Zheng Y; Tang X
    ACS Appl Mater Interfaces; 2021 Nov; 13(46):55178-55187. PubMed ID: 34783236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High Thermoelectric Performance of In
    Yin X; Liu JY; Chen L; Wu LM
    Acc Chem Res; 2018 Feb; 51(2):240-247. PubMed ID: 29313668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Achieving High Thermoelectric Performance in Rare-Earth Element-Free CaMg
    Guo M; Guo F; Zhu J; Yin L; Zhang Q; Cai W; Sui J
    Research (Wash D C); 2020; 2020():5016564. PubMed ID: 32783029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple Valence Bands Convergence and Localized Lattice Engineering Lead to Superhigh Thermoelectric Figure of Merit in MnTe.
    Zulkifal S; Wang Z; Zhang X; Siddique S; Yu Y; Wang C; Gong Y; Li S; Li D; Zhang Y; Wang P; Tang G
    Adv Sci (Weinh); 2023 Jun; 10(17):e2206342. PubMed ID: 37092577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.