These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 35650811)

  • 1. Flexible and Shape-Reconfigurable Hydrogel Interlocking Adhesives for High Adhesion in Wet Environments Based on Anisotropic Swelling of Hydrogel Microstructures.
    Park HH; Seong M; Sun K; Ko H; Kim SM; Jeong HE
    ACS Macro Lett; 2017 Dec; 6(12):1325-1330. PubMed ID: 35650811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioinspired reversible hydrogel adhesives for wet and underwater surfaces.
    Yi H; Lee SH; Seong M; Kwak MK; Jeong HE
    J Mater Chem B; 2018 Dec; 6(48):8064-8070. PubMed ID: 32254925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strong Wet and Dry Adhesion by Cupped Microstructures.
    Wang Y; Kang V; Arzt E; Federle W; Hensel R
    ACS Appl Mater Interfaces; 2019 Jul; 11(29):26483-26490. PubMed ID: 31241296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Smart Actuators and Adhesives for Reconfigurable Matter.
    Ko H; Javey A
    Acc Chem Res; 2017 Apr; 50(4):691-702. PubMed ID: 28263544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomimetic Microstructured Hydrogels with Thermal-Triggered Switchable Underwater Adhesion and Stable Antiswelling Property.
    Zhang B; Jia L; Jiang J; Wu S; Xiang T; Zhou S
    ACS Appl Mater Interfaces; 2021 Aug; 13(30):36574-36586. PubMed ID: 34304555
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced reversible adhesion of dopamine methacrylamide-coated elastomer microfibrillar structures under wet conditions.
    Glass P; Chung H; Washburn NR; Sitti M
    Langmuir; 2009 Jun; 25(12):6607-12. PubMed ID: 19456091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Porous Liquid-Crystalline Networks with Hydrogel-Like Actuation and Reconfigurable Function.
    Jiang J; Han L; Ge F; Xiao Y; Cheng R; Tong X; Zhao Y
    Angew Chem Int Ed Engl; 2022 Feb; 61(9):e202116689. PubMed ID: 34970834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robust microzip fastener: repeatable interlocking using polymeric rectangular parallelepiped arrays.
    Lee C; Kim SM; Kim YJ; Choi YW; Suh KY; Pang C; Choi M
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2561-8. PubMed ID: 25615547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogel adhesive formed
    Liang M; Wei D; Yao Z; Ren P; Dai J; Xu L; Zhang T; Zhang Q
    Biomater Sci; 2022 Mar; 10(6):1486-1497. PubMed ID: 35167630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An ultra-stretchable glycerol-ionic hybrid hydrogel with reversible gelid adhesion.
    Yan Y; Huang J; Qiu X; Cui X; Xu S; Wu X; Yao P; Huang C
    J Colloid Interface Sci; 2021 Jan; 582(Pt A):187-200. PubMed ID: 32818713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sweat-Resistant Silk Fibroin-Based Double Network Hydrogel Adhesives.
    Wang J; Zhang N; Tan Y; Fu F; Liu G; Fang Y; Zhang XX; Liu M; Cheng Y; Yu J
    ACS Appl Mater Interfaces; 2022 May; 14(19):21945-21953. PubMed ID: 35507426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water-Responsive Shape Recovery Induced Buckling in Biodegradable Photo-Cross-Linked Poly(ethylene glycol) (PEG) Hydrogel.
    Salvekar AV; Huang WM; Xiao R; Wong YS; Venkatraman SS; Tay KH; Shen ZX
    Acc Chem Res; 2017 Feb; 50(2):141-150. PubMed ID: 28181795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Strength Hydrogel Adhesive Formed via Multiple Interactions for Persistent Adhesion under Saline.
    Liang M; Ge X; Dai J; Ren P; Wei D; Xu L; Zhang Q; He C; Lu Z; Zhang T
    ACS Appl Bio Mater; 2021 Jun; 4(6):5016-5025. PubMed ID: 35007050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and fabrication of gecko-inspired adhesives.
    Jin K; Tian Y; Erickson JS; Puthoff J; Autumn K; Pesika NS
    Langmuir; 2012 Apr; 28(13):5737-42. PubMed ID: 22375683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Antifreezing/Antiheating Hydrogel Containing Catechol Derivative Urushiol for Strong Wet Adhesion to Various Substrates.
    Fan X; Zhou W; Chen Y; Yan L; Fang Y; Liu H
    ACS Appl Mater Interfaces; 2020 Jul; 12(28):32031-32040. PubMed ID: 32539329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Beetle-inspired bidirectional, asymmetric interlocking using geometry-tunable nanohairs.
    Pang C; Kim SM; Rahmawan Y; Suh KY
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):4225-30. PubMed ID: 22817617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning the Morphology of Suction Discs to Enable Directional Adhesion for Locomotion in Wet Environments.
    Sandoval JA; Ishida M; Jadhav S; Huen S; Tolley MT
    Soft Robot; 2022 Dec; 9(6):1083-1097. PubMed ID: 35285735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micromechanical measurement of adhesion of dehydrating silicone hydrogel contact lenses to corneal tissue.
    Zhu D; Liu Y; Gilbert JL
    Acta Biomater; 2021 Jun; 127():242-251. PubMed ID: 33812075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strong Wet Adhesion of Tough Transparent Nanocomposite Hydrogels for Fast Tunable Focus Lenses.
    Li F; Zhang G; Wang Z; Jiang H; Yan S; Zhang L; Li H
    ACS Appl Mater Interfaces; 2019 Apr; 11(16):15071-15078. PubMed ID: 30938504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunicate-inspired polyallylamine-based hydrogels for wet adhesion: A comparative study of catechol- and gallol-functionalities.
    Lee SY; Lee JN; Chathuranga K; Lee JS; Park WH
    J Colloid Interface Sci; 2021 Nov; 601():143-155. PubMed ID: 34058550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.