These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 35650831)

  • 1. High-Frequency Mechanical Behavior of Pure Polymer-Grafted Nanoparticle Constructs.
    Bilchak CR; Huang Y; Benicewicz BC; Durning CJ; Kumar SK
    ACS Macro Lett; 2019 Mar; 8(3):294-298. PubMed ID: 35650831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding Gas Transport in Polymer-Grafted Nanoparticle Assemblies.
    Bilchak CR; Jhalaria M; Adhikari S; Midya J; Huang Y; Abbas Z; Nikoubashman A; Benicewicz BC; Rubinstein M; Kumar SK
    Macromolecules; 2022 Apr; 55(8):3011-3019. PubMed ID: 35978703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of Polymer-Grafted Nanoparticle Melts.
    Midya J; Rubinstein M; Kumar SK; Nikoubashman A
    ACS Nano; 2020 Nov; 14(11):15505-15516. PubMed ID: 33084300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accelerated Local Dynamics in Matrix-Free Polymer Grafted Nanoparticles.
    Jhalaria M; Buenning E; Huang Y; Tyagi M; Zorn R; Zamponi M; García-Sakai V; Jestin J; Benicewicz BC; Kumar SK
    Phys Rev Lett; 2019 Oct; 123(15):158003. PubMed ID: 31702322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Local Structure of Polymer-Grafted Nanoparticle Melts.
    Chan SY; Jhalaria M; Huang Y; Li R; Benicewicz BC; Durning CJ; Vo T; Kumar SK
    ACS Nano; 2022 Jul; 16(7):10404-10411. PubMed ID: 35816726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unusual High-Frequency Mechanical Properties of Polymer-Grafted Nanoparticle Melts.
    Jhalaria M; Cang Y; Huang Y; Benicewicz B; Kumar SK; Fytas G
    Phys Rev Lett; 2022 May; 128(18):187801. PubMed ID: 35594089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning Selectivities in Gas Separation Membranes Based on Polymer-Grafted Nanoparticles.
    Bilchak CR; Jhalaria M; Huang Y; Abbas Z; Midya J; Benedetti FM; Parisi D; Egger W; Dickmann M; Minelli M; Doghieri F; Nikoubashman A; Durning CJ; Vlassopoulos D; Jestin J; Smith ZP; Benicewicz BC; Rubinstein M; Leibler L; Kumar SK
    ACS Nano; 2020 Dec; 14(12):17174-17183. PubMed ID: 33216546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-assembly of polymer-grafted nanoparticles in solvent-free conditions.
    Chremos A; Douglas JF
    Soft Matter; 2016 Nov; 12(47):9527-9537. PubMed ID: 27841418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-Regime Conformation of Grafted Polymer on Nanoparticle Determines Symmetry of Nanoparticle Self-Assembly.
    Yu JW; Yun H; Lee WB; Kim Y
    Adv Sci (Weinh); 2024 Sep; 11(36):e2406720. PubMed ID: 39073253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of bidispersity in grafted chain length on grafted chain conformations and potential of mean force between polymer grafted nanoparticles in a homopolymer matrix.
    Nair N; Wentzel N; Jayaraman A
    J Chem Phys; 2011 May; 134(19):194906. PubMed ID: 21599087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Designing Superlattice Structure via Self-Assembly of One-Component Polymer-Grafted Nanoparticles.
    Hou G; Xia X; Liu J; Wang W; Dong M; Zhang L
    J Phys Chem B; 2019 Mar; 123(9):2157-2168. PubMed ID: 30742436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In Situ Real-Time Mechanical and Morphological Characterization of Electrodes for Electrochemical Energy Storage and Conversion by Electrochemical Quartz Crystal Microbalance with Dissipation Monitoring.
    Shpigel N; Levi MD; Sigalov S; Daikhin L; Aurbach D
    Acc Chem Res; 2018 Jan; 51(1):69-79. PubMed ID: 29297669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation of Interaction Forces between Nanoparticles:  End-Grafted Polymer Modifiers.
    Marla KT; Meredith JC
    J Chem Theory Comput; 2006 Nov; 2(6):1624-31. PubMed ID: 26627033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Location of Imbibed Solvent in Polymer-Grafted Nanoparticle Membranes.
    Buenning E; Jestin J; Huang Y; Benicewicz BC; Durning CJ; Kumar SK
    ACS Macro Lett; 2018 Sep; 7(9):1051-1055. PubMed ID: 35632947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced Electrical and Electromagnetic Interference Shielding Properties of Polymer-Graphene Nanoplatelet Composites Fabricated via Supercritical-Fluid Treatment and Physical Foaming.
    Hamidinejad M; Zhao B; Zandieh A; Moghimian N; Filleter T; Park CB
    ACS Appl Mater Interfaces; 2018 Sep; 10(36):30752-30761. PubMed ID: 30124039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of Grafting Mechanism on the Polymer Coverage and Self-Assembly of Hairy Nanoparticles.
    Asai M; Zhao D; Kumar SK
    ACS Nano; 2017 Jul; 11(7):7028-7035. PubMed ID: 28618225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing sensitivity of QCM for dengue type 1 virus detection using graphene-based polymer composites.
    Navakul K; Sangma C; Yenchitsomanus PT; Chunta S; Lieberzeit PA
    Anal Bioanal Chem; 2021 Oct; 413(24):6191-6198. PubMed ID: 34091710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crazing of nanocomposites with polymer-tethered nanoparticles.
    Meng D; Kumar SK; Ge T; Robbins MO; Grest GS
    J Chem Phys; 2016 Sep; 145(9):094902. PubMed ID: 27609009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Grafted polymer chains suppress nanoparticle diffusion in athermal polymer melts.
    Lin CC; Griffin PJ; Chao H; Hore MJA; Ohno K; Clarke N; Riggleman RA; Winey KI; Composto RJ
    J Chem Phys; 2017 May; 146(20):203332. PubMed ID: 28571331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlling the Location of Bare Nanoparticles in Polymer-Nanoparticle Blend Films by Adding Polymer-Grafted Nanoparticles.
    Sriramoju KK; Padmanabhan V
    Phys Rev Lett; 2015 Jun; 114(25):258301. PubMed ID: 26197148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.