These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 35650866)

  • 1. Single Chain Polymeric Nanoparticles to Promote Selective Hydroxylation Reactions of Phenol Catalyzed by Copper.
    Thanneeru S; Duay SS; Jin L; Fu Y; Angeles-Boza AM; He J
    ACS Macro Lett; 2017 Jul; 6(7):652-656. PubMed ID: 35650866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Particle Heterogeneity in Catalytic Copper-Containing Single-Chain Polymeric Nanoparticles Revealed by Single-Particle Kinetics.
    Sathyan A; Archontakis E; Spiering AJH; Albertazzi L; Palmans ARA
    Molecules; 2024 Apr; 29(8):. PubMed ID: 38675670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalytically Active Single-Chain Polymeric Nanoparticles: Exploring Their Functions in Complex Biological Media.
    Liu Y; Pujals S; Stals PJM; Paulöhrl T; Presolski SI; Meijer EW; Albertazzi L; Palmans ARA
    J Am Chem Soc; 2018 Mar; 140(9):3423-3433. PubMed ID: 29457449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modular Synthetic Platform for the Construction of Functional Single-Chain Polymeric Nanoparticles: From Aqueous Catalysis to Photosensitization.
    Liu Y; Pauloehrl T; Presolski SI; Albertazzi L; Palmans AR; Meijer EW
    J Am Chem Soc; 2015 Oct; 137(40):13096-105. PubMed ID: 26388188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single Atomic Cu-N
    Zhang T; Nie X; Yu W; Guo X; Song C; Si R; Liu Y; Zhao Z
    iScience; 2019 Dec; 22():97-108. PubMed ID: 31759238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectrally PAINTing a Single Chain Polymeric Nanoparticle at Super-Resolution.
    Archontakis E; Deng L; Zijlstra P; Palmans ARA; Albertazzi L
    J Am Chem Soc; 2022 Dec; 144(51):23698-23707. PubMed ID: 36516974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Forced unfolding of single-chain polymeric nanoparticles.
    Hosono N; Kushner AM; Chung J; Palmans AR; Guan Z; Meijer EW
    J Am Chem Soc; 2015 Jun; 137(21):6880-8. PubMed ID: 25946315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supported Cu(II) polymer catalysts for aqueous phenol oxidation.
    Castro IU; Stüber F; Fabregat A; Font J; Fortuny A; Bengoa C
    J Hazard Mater; 2009 Apr; 163(2-3):809-15. PubMed ID: 18722052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Titanium(iv)-folded single-chain polymeric nanoparticles as artificial metalloenzyme for asymmetric sulfoxidation in water.
    Zhang Y; Wang W; Fu W; Zhang M; Tang Z; Tan R; Yin D
    Chem Commun (Camb); 2018 Aug; 54(68):9430-9433. PubMed ID: 30079428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spontaneous Self-Assembly of Single-Chain Amphiphilic Polymeric Nanoparticles in Water.
    Huang SY; Cheng CC
    Nanomaterials (Basel); 2020 Oct; 10(10):. PubMed ID: 33053654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthetic Polymers To Promote Cooperative Cu Activity for O
    Thanneeru S; Milazzo N; Lopes A; Wei Z; Angeles-Boza AM; He J
    J Am Chem Soc; 2019 Mar; 141(10):4252-4256. PubMed ID: 30807129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tyrosinase Models. Synthesis, Structure, Catechol Oxidase Activity, and Phenol Monooxygenase Activity of a Dinuclear Copper Complex Derived from a Triamino Pentabenzimidazole Ligand.
    Monzani E; Quinti L; Perotti A; Casella L; Gullotti M; Randaccio L; Geremia S; Nardin G; Faleschini P; Tabbì G
    Inorg Chem; 1998 Feb; 37(3):553-562. PubMed ID: 11670307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elucidating the Stability of Single-Chain Polymeric Nanoparticles in Biological Media and Living Cells.
    Deng L; Albertazzi L; Palmans ARA
    Biomacromolecules; 2022 Jan; 23(1):326-338. PubMed ID: 34904821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supramolecular Assembly Mediates the Formation of Single-Chain Polymeric Nanoparticles.
    Cheng CC; Chang FC; Yen HC; Lee DJ; Chiu CW; Xin Z
    ACS Macro Lett; 2015 Oct; 4(10):1184-1188. PubMed ID: 35614803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polymeric "Clickase" Accelerates the Copper Click Reaction of Small Molecules, Proteins, and Cells.
    Chen J; Wang J; Li K; Wang Y; Gruebele M; Ferguson AL; Zimmerman SC
    J Am Chem Soc; 2019 Jun; 141(24):9693-9700. PubMed ID: 31124359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic role of Cu sites of Cu/MCM-41 in phenol hydroxylation.
    Zhang G; Long J; Wang X; Zhang Z; Dai W; Liu P; Li Z; Wu L; Fu X
    Langmuir; 2010 Jan; 26(2):1362-71. PubMed ID: 19938803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Beyond the Second Coordination Sphere: Engineering Dirhodium Artificial Metalloenzymes To Enable Protein Control of Transition Metal Catalysis.
    Lewis JC
    Acc Chem Res; 2019 Mar; 52(3):576-584. PubMed ID: 30830755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Consequences of block sequence on the orthogonal folding of triblock copolymers.
    Hosono N; Stals PJ; Palmans AR; Meijer EW
    Chem Asian J; 2014 Apr; 9(4):1099-107. PubMed ID: 24678056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simplest Monodentate Imidazole Stabilization of the oxy-Tyrosinase Cu2 O2 Core: Phenolate Hydroxylation through a Cu(III) Intermediate.
    Chiang L; Keown W; Citek C; Wasinger EC; Stack TD
    Angew Chem Int Ed Engl; 2016 Aug; 55(35):10453-7. PubMed ID: 27440390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cu(OTf)2-catalyzed selective arene C-H bond hydroxylation and nitration with KNO2 as an ambident O- and N-nucleophile via a Cu(II)-Cu(III)-Cu(I) mechanism.
    Zhang H; Zhao L; Wang DX; Wang MX
    Org Lett; 2013 Aug; 15(15):3836-9. PubMed ID: 23848544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.