These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 35651244)

  • 1. Strength of Recluse Spider's Silk Originates from Nanofibrils.
    Wang Q; Schniepp HC
    ACS Macro Lett; 2018 Nov; 7(11):1364-1370. PubMed ID: 35651244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Natural spider silk nanofibrils produced by assembling molecules or disassembling fibers.
    Perera D; Li L; Walsh C; Silliman J; Xiong Y; Wang Q; Schniepp HC
    Acta Biomater; 2023 Sep; 168():323-332. PubMed ID: 37414111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spider Silk-Inspired Artificial Fibers.
    Li J; Li S; Huang J; Khan AQ; An B; Zhou X; Liu Z; Zhu M
    Adv Sci (Weinh); 2022 Feb; 9(5):e2103965. PubMed ID: 34927397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Establishing superfine nanofibrils for robust polyelectrolyte artificial spider silk and powerful artificial muscles.
    He W; Wang M; Mei G; Liu S; Khan AQ; Li C; Feng D; Su Z; Bao L; Wang G; Liu E; Zhu Y; Bai J; Zhu M; Zhou X; Liu Z
    Nat Commun; 2024 Apr; 15(1):3485. PubMed ID: 38664427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-strength and ultra-tough supramolecular polyamide spider silk fibers assembled via specific covalent and reversible hydrogen bonds.
    Mi J; Li X; Niu S; Zhou X; Lu Y; Yang Y; Sun Y; Meng Q
    Acta Biomater; 2024 Mar; 176():190-200. PubMed ID: 38199426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brown recluse spider's nanometer scale ribbons of stiff extensible silk.
    Schniepp HC; Koebley SR; Vollrath F
    Adv Mater; 2013 Dec; 25(48):7028-32. PubMed ID: 24352987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular and nanostructural mechanisms of deformation, strength and toughness of spider silk fibrils.
    Nova A; Keten S; Pugno NM; Redaelli A; Buehler MJ
    Nano Lett; 2010 Jul; 10(7):2626-34. PubMed ID: 20518518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tough synthetic spider-silk fibers obtained by titanium dioxide incorporation and formaldehyde cross-linking in a simple wet-spinning process.
    Zhu H; Sun Y; Yi T; Wang S; Mi J; Meng Q
    Biochimie; 2020 Aug; 175():77-84. PubMed ID: 32417459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural Changes in Spider Dragline Silk after Repeated Supercontraction-Stretching Processes.
    Hu L; Chen Q; Yao J; Shao Z; Chen X
    Biomacromolecules; 2020 Dec; 21(12):5306-5314. PubMed ID: 33206498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-Point Nanoindentation Method to Determine Mechanical Anisotropy in Nanofibrillar Thin Films.
    Perera D; Wang Q; Schniepp HC
    Small; 2022 Jul; 18(30):e2202065. PubMed ID: 35780468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-strengthening tape junctions inspired by recluse spider webs.
    Skopic BH; Koebley SR; Schniepp HC
    Mater Horiz; 2022 Oct; 9(10):2581-2591. PubMed ID: 35904268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The elaborate structure of spider silk: structure and function of a natural high performance fiber.
    Römer L; Scheibel T
    Prion; 2008; 2(4):154-61. PubMed ID: 19221522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conserved C-terminal domain of spider tubuliform spidroin 1 contributes to extensibility in synthetic fibers.
    Gnesa E; Hsia Y; Yarger JL; Weber W; Lin-Cereghino J; Lin-Cereghino G; Tang S; Agari K; Vierra C
    Biomacromolecules; 2012 Feb; 13(2):304-12. PubMed ID: 22176138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein secondary structure in spider silk nanofibrils.
    Wang Q; McArdle P; Wang SL; Wilmington RL; Xing Z; Greenwood A; Cotten ML; Qazilbash MM; Schniepp HC
    Nat Commun; 2022 Jul; 13(1):4329. PubMed ID: 35902573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoconfinement of spider silk fibrils begets superior strength, extensibility, and toughness.
    Giesa T; Arslan M; Pugno NM; Buehler MJ
    Nano Lett; 2011 Nov; 11(11):5038-46. PubMed ID: 21967633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. What makes spider silk fibers so strong? From molecular-crystallite network to hierarchical network structures.
    Xu G; Gong L; Yang Z; Liu XY
    Soft Matter; 2014 Apr; 10(13):2116-23. PubMed ID: 24652059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiscale mechanisms of nutritionally induced property variation in spider silks.
    Blamires SJ; Nobbs M; Martens PJ; Tso IM; Chuang WT; Chang CK; Sheu HS
    PLoS One; 2018; 13(2):e0192005. PubMed ID: 29390013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mesoscale structures in amorphous silks from a spider's orb-web.
    Riekel C; Burghammer M; Rosenthal M
    Sci Rep; 2020 Oct; 10(1):18205. PubMed ID: 33097740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spider silk aging: initial improvement in a high performance material followed by slow degradation.
    Agnarsson I; Boutry C; Blackledge TA
    J Exp Zool A Ecol Genet Physiol; 2008 Oct; 309(8):494-504. PubMed ID: 18626974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal networks in silk fibrous materials: from hierarchical structure to ultra performance.
    Nguyen AT; Huang QL; Yang Z; Lin N; Xu G; Liu XY
    Small; 2015 Mar; 11(9-10):1039-54. PubMed ID: 25510895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.