BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 35651762)

  • 1. Corrigendum: Multi-Omics and miRNA Interaction Joint Analysis Highlight New Insights Into Anthocyanin Biosynthesis in Peanuts (
    Li J; Ma Y; Hu M; Zhao Y; Liu B; Wang C; Zhang M; Zhang L; Yang X; Mu G
    Front Plant Sci; 2022; 13():929085. PubMed ID: 35651762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-Omics and miRNA Interaction Joint Analysis Highlight New Insights Into Anthocyanin Biosynthesis in Peanuts (
    Li J; Ma Y; Hu M; Zhao Y; Liu B; Wang C; Zhang M; Zhang L; Yang X; Mu G
    Front Plant Sci; 2022; 13():818345. PubMed ID: 35251087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative transcriptome analysis of anthocyanin synthesis in black and pink peanut.
    Xia H; Zhu L; Zhao C; Li K; Shang C; Hou L; Wang M; Shi J; Fan S; Wang X
    Plant Signal Behav; 2020; 15(2):1721044. PubMed ID: 32009540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological and biochemical mechanisms underlying the role of anthocyanin in acquired tolerance to salt stress in peanut (
    Li G; Guo X; Sun Y; Gangurde SS; Zhang K; Weng F; Wang G; Zhang H; Li A; Wang X; Zhao C
    Front Plant Sci; 2024; 15():1368260. PubMed ID: 38529061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptome and Metabolome Analysis Unveil Anthocyanin Metabolism in Pink and Red Testa of Peanut (
    Xue Q; Zhang X; Yang H; Li H; Lv Y; Zhang K; Liu Y; Liu F; Wan Y
    Int J Genomics; 2021; 2021():5883901. PubMed ID: 34395608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptomic profiling reveals pigment regulation during peanut testa development.
    Wan L; Li B; Lei Y; Yan L; Huai D; Kang Y; Jiang H; Tan J; Liao B
    Plant Physiol Biochem; 2018 Apr; 125():116-125. PubMed ID: 29438896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Corrigendum: Physiological and Expressional Regulation on Photosynthesis, Starch and Sucrose Metabolism Response to Waterlogging Stress in Peanut.
    Zeng R; Chen T; Wang X; Cao J; Li X; Xu X; Chen L; Xia Q; Dong Y; Huang L; Wang L; Zhang J; Zhang L
    Front Plant Sci; 2021; 12():783044. PubMed ID: 34737759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep sequencing identifies novel and conserved microRNAs in peanuts (Arachis hypogaea L.).
    Zhao CZ; Xia H; Frazier TP; Yao YY; Bi YP; Li AQ; Li MJ; Li CS; Zhang BH; Wang XJ
    BMC Plant Biol; 2010 Jan; 10():3. PubMed ID: 20047695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Final report on the safety assessment of Peanut (Arachis hypogaea) Oil, Hydrogenated Peanut Oil, Peanut Acid, Peanut Glycerides, and Peanut (Arachis hypogaea) Flour.
    Int J Toxicol; 2001; 20 Suppl 2():65-77. PubMed ID: 11558642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptomic and metabolomic joint analysis reveals distinct flavonoid biosynthesis regulation for variegated testa color development in peanut (Arachis hypogaea L.).
    Hu M; Li J; Hou M; Liu X; Cui S; Yang X; Liu L; Jiang X; Mu G
    Sci Rep; 2021 May; 11(1):10721. PubMed ID: 34021210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Whole-genome resequencing-based QTL-seq identified AhTc1 gene encoding a R2R3-MYB transcription factor controlling peanut purple testa colour.
    Zhao Y; Ma J; Li M; Deng L; Li G; Xia H; Zhao S; Hou L; Li P; Ma C; Yuan M; Ren L; Gu J; Guo B; Zhao C; Wang X
    Plant Biotechnol J; 2020 Jan; 18(1):96-105. PubMed ID: 31131506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Corrigendum: Genome Sequencing and Analysis of the Peanut B-Genome Progenitor (
    Lu Q; Li H; Hong Y; Zhang G; Wen S; Li X; Zhou G; Li S; Liu H; Liu H; Liu Z; Varshney RK; Chen X; Liang X
    Front Plant Sci; 2018; 9():1099. PubMed ID: 30100917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptome and metabolome reveal redirection of flavonoids in a white testa peanut mutant.
    Wan L; Lei Y; Yan L; Liu Y; Pandey MK; Wan X; Varshney RK; Fang J; Liao B
    BMC Plant Biol; 2020 Apr; 20(1):161. PubMed ID: 32293272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nutritional chemistry of the peanut (Arachis hypogaea).
    Toomer OT
    Crit Rev Food Sci Nutr; 2018; 58(17):3042-3053. PubMed ID: 28662347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Colonization by multi-potential Pseudomonas aeruginosa P4 stimulates peanut (Arachis hypogaea L.) growth, defence physiology and root system functioning to benefit the root-rhizobacterial interface.
    Gupta V; Kumar GN; Buch A
    J Plant Physiol; 2020 May; 248():153144. PubMed ID: 32172097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mining, identification and function analysis of microRNAs and target genes in peanut (Arachis hypogaea L.).
    Zhang T; Hu S; Yan C; Li C; Zhao X; Wan S; Shan S
    Plant Physiol Biochem; 2017 Feb; 111():85-96. PubMed ID: 27915176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolite Profiles of Raw Peanut Seeds Reveal Differences between Market-Types.
    Klevorn CM; Dean LL; Johanningsmeier SD
    J Food Sci; 2019 Mar; 84(3):397-405. PubMed ID: 30775781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative Transcriptome Analysis of the Skin-Specific Accumulation of Anthocyanins in Black Peanut ( Arachis hypogaea L.).
    Huang J; Xing M; Li Y; Cheng F; Gu H; Yue C; Zhang Y
    J Agric Food Chem; 2019 Jan; 67(4):1312-1324. PubMed ID: 30614699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Storage protein profiles in Spanish and runner market type peanuts and potential markers.
    Liang XQ; Luo M; Holbrook CC; Guo BZ
    BMC Plant Biol; 2006 Oct; 6():24. PubMed ID: 17038167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of the Candidate Proteins Related to Oleic Acid Accumulation during Peanut (
    Liu H; Li H; Gu J; Deng L; Ren L; Hong Y; Lu Q; Chen X; Liang X
    Int J Mol Sci; 2018 Apr; 19(4):. PubMed ID: 29670063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.