BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 35652258)

  • 1. Ultralarge Stokes Shift Phosphorescence Artificial Harvesting Supramolecular System with Near-Infrared Emission.
    Huo M; Dai XY; Liu Y
    Adv Sci (Weinh); 2022 Aug; 9(22):e2201523. PubMed ID: 35652258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrahigh Supramolecular Cascaded Room-Temperature Phosphorescence Capturing System.
    Huo M; Dai XY; Liu Y
    Angew Chem Int Ed Engl; 2021 Dec; 60(52):27171-27177. PubMed ID: 34704341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noncovalent Polymerization-Activated Ultrastrong Near-Infrared Room-Temperature Phosphorescence Energy Transfer Assembly in Aqueous Solution.
    Dai XY; Huo M; Dong X; Hu YY; Liu Y
    Adv Mater; 2022 Sep; 34(38):e2203534. PubMed ID: 35771589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformationally confined three-armed supramolecular folding for boosting near-infrared biological imaging.
    Wang HJ; Zheng MM; Xing WW; Li YX; Wang YY; Zhu H; Zhang YM; Yu Q; Liu Y
    Chem Sci; 2023 Aug; 14(31):8401-8407. PubMed ID: 37564418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cucurbit[8]uril Confinement-Based Secondary Coassembly for High-Efficiency Phosphorescence Energy Transfer Behavior.
    Dai XY; Song Q; Zhou WL; Liu Y
    JACS Au; 2024 Jan; 4(1):216-227. PubMed ID: 38274263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uncommon Supramolecular Phosphorescence-Capturing Assembly Based on Cucurbit[8]uril-Mediated Molecular Folding for Near-Infrared Lysosome Imaging.
    Huo M; Dai XY; Liu Y
    Small; 2022 Jan; 18(1):e2104514. PubMed ID: 34741495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Highly Efficient Phosphorescence/Fluorescence Supramolecular Switch Based on a Bromoisoquinoline Cascaded Assembly in Aqueous Solution.
    Dai XY; Hu YY; Sun Y; Huo M; Dong X; Liu Y
    Adv Sci (Weinh); 2022 May; 9(14):e2200524. PubMed ID: 35285166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Efficient Near-Infrared Emissive Artificial Supramolecular Light-Harvesting System for Imaging in the Golgi Apparatus.
    Chen XM; Cao Q; Bisoyi HK; Wang M; Yang H; Li Q
    Angew Chem Int Ed Engl; 2020 Jun; 59(26):10493-10497. PubMed ID: 32196893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Near-Infrared Phosphorescent Switch of Diarylethene Phenylpyridinium Derivative and Cucurbit[8]uril for Cell Imaging.
    Wang C; Liu YH; Liu Y
    Small; 2022 May; 18(21):e2201821. PubMed ID: 35460176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Supramolecular assembly activated single-molecule phosphorescence resonance energy transfer for near-infrared targeted cell imaging.
    Zhou X; Bai X; Shang F; Zhang HY; Wang LH; Xu X; Liu Y
    Nat Commun; 2024 Jun; 15(1):4787. PubMed ID: 38839843
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly Reversible Supramolecular Light Switch for NIR Phosphorescence Resonance Energy Transfer.
    Wang C; Ma XK; Guo P; Jiang C; Liu YH; Liu G; Xu X; Liu Y
    Adv Sci (Weinh); 2022 Jan; 9(2):e2103041. PubMed ID: 34738729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aromatic Bridged Bis(triphenylamine) Cascade Assembly Achieved Tunable Nanosupramolecular Morphology and NIR Targeted Cell Imaging.
    Yu J; Niu J; Yue J; Wang LH; Liu Y
    ACS Nano; 2023 Oct; 17(19):19349-19358. PubMed ID: 37782105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-Photon Excited Near-Infrared Phosphorescence Based on Secondary Supramolecular Confinement.
    Ma XK; Zhou X; Wu J; Shen FF; Liu Y
    Adv Sci (Weinh); 2022 Jun; 9(18):e2201182. PubMed ID: 35466559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Efficient Artificial Light-Harvesting Systems Constructed in an Aqueous Solution Based on Twisted Cucurbit[14]Uril.
    Luo Y; Zhang W; Ren Q; Tao Z; Xiao X
    ACS Appl Mater Interfaces; 2022 Jul; 14(26):29806-29812. PubMed ID: 35748110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supramolecular Assemblies with Near-Infrared Emission Mediated in Two Stages by Cucurbituril and Amphiphilic Calixarene for Lysosome-Targeted Cell Imaging.
    Chen XM; Chen Y; Yu Q; Gu BH; Liu Y
    Angew Chem Int Ed Engl; 2018 Sep; 57(38):12519-12523. PubMed ID: 30098089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multivalent supramolecular assembly with ultralong organic room temperature phosphorescence, high transfer efficiency and ultrahigh antenna effect in water.
    Zhou WL; Lin W; Chen Y; Dai XY; Liu Z; Liu Y
    Chem Sci; 2022 Jan; 13(2):573-579. PubMed ID: 35126989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purely organic light-harvesting phosphorescence energy transfer by β-cyclodextrin pseudorotaxane for mitochondria targeted imaging.
    Shen FF; Chen Y; Dai X; Zhang HY; Zhang B; Liu Y; Liu Y
    Chem Sci; 2020 Dec; 12(5):1851-1857. PubMed ID: 34163949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amphiphilicity-Controlled Polychromatic Emissive Supramolecular Self-Assemblies for Highly Sensitive and Efficient Artificial Light-Harvesting Systems.
    Chen XM; Cao KW; Bisoyi HK; Zhang S; Qian N; Guo L; Guo DS; Yang H; Li Q
    Small; 2022 Oct; 18(42):e2204360. PubMed ID: 36135778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction of aggregation-induced emission photosensitizers through host-guest interactions for photooxidation reaction and light-harvesting.
    Zhang RZ; Liu H; Xin CL; Han N; Ma CQ; Yu S; Wang YB; Xing LB
    J Colloid Interface Sci; 2023 Dec; 651():894-901. PubMed ID: 37573735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Supramolecular assembly confined purely organic room temperature phosphorescence and its biological imaging.
    Zhou WL; Lin W; Chen Y; Liu Y
    Chem Sci; 2022 Jul; 13(27):7976-7989. PubMed ID: 35919429
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.