BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 35652354)

  • 41. Histone deacetylase 1 controls cardiomyocyte proliferation during embryonic heart development and cardiac regeneration in zebrafish.
    Bühler A; Gahr BM; Park DD; Bertozzi A; Boos A; Dalvoy M; Pott A; Oswald F; Kovall RA; Kühn B; Weidinger G; Rottbauer W; Just S
    PLoS Genet; 2021 Nov; 17(11):e1009890. PubMed ID: 34723970
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Heart regeneration in zebrafish.
    Poss KD; Wilson LG; Keating MT
    Science; 2002 Dec; 298(5601):2188-90. PubMed ID: 12481136
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Periovulatory expression of hyaluronan and proteoglycan link protein 1 (Hapln1) in the rat ovary: hormonal regulation and potential function.
    Liu J; Park ES; Curry TE; Jo M
    Mol Endocrinol; 2010 Jun; 24(6):1203-17. PubMed ID: 20339004
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ex Vivo Techniques to Study Heart Regeneration in Zebrafish.
    Duca S; Cao J
    Methods Mol Biol; 2021; 2158():211-222. PubMed ID: 32857376
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Myocardial NF-κB activation is essential for zebrafish heart regeneration.
    Karra R; Knecht AK; Kikuchi K; Poss KD
    Proc Natl Acad Sci U S A; 2015 Oct; 112(43):13255-60. PubMed ID: 26472034
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A dual epimorphic and compensatory mode of heart regeneration in zebrafish.
    Sallin P; de Preux Charles AS; Duruz V; Pfefferli C; Jaźwińska A
    Dev Biol; 2015 Mar; 399(1):27-40. PubMed ID: 25557620
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Protumorigenic role of HAPLN1 and its IgV domain in malignant pleural mesothelioma.
    Ivanova AV; Goparaju CM; Ivanov SV; Nonaka D; Cruz C; Beck A; Lonardo F; Wali A; Pass HI
    Clin Cancer Res; 2009 Apr; 15(8):2602-11. PubMed ID: 19351750
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Translational profiling of cardiomyocytes identifies an early Jak1/Stat3 injury response required for zebrafish heart regeneration.
    Fang Y; Gupta V; Karra R; Holdway JE; Kikuchi K; Poss KD
    Proc Natl Acad Sci U S A; 2013 Aug; 110(33):13416-21. PubMed ID: 23901114
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cardiomyocyte heterogeneity during zebrafish development and regeneration.
    Tsedeke AT; Allanki S; Gentile A; Jimenez-Amilburu V; Rasouli SJ; Guenther S; Lai SL; Stainier DYR; Marín-Juez R
    Dev Biol; 2021 Aug; 476():259-271. PubMed ID: 33857482
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A Genetic Cardiomyocyte Ablation Model for the Study of Heart Regeneration in Zebrafish.
    Sun F; Shoffner AR; Poss KD
    Methods Mol Biol; 2021; 2158():71-80. PubMed ID: 32857367
    [TBL] [Abstract][Full Text] [Related]  

  • 51. AP-1 Contributes to Chromatin Accessibility to Promote Sarcomere Disassembly and Cardiomyocyte Protrusion During Zebrafish Heart Regeneration.
    Beisaw A; Kuenne C; Guenther S; Dallmann J; Wu CC; Bentsen M; Looso M; Stainier DYR
    Circ Res; 2020 Jun; 126(12):1760-1778. PubMed ID: 32312172
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Metabolic modulation regulates cardiac wall morphogenesis in zebrafish.
    Fukuda R; Aharonov A; Ong YT; Stone OA; El-Brolosy M; Maischein HM; Potente M; Tzahor E; Stainier DY
    Elife; 2019 Dec; 8():. PubMed ID: 31868165
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mydgf promotes Cardiomyocyte proliferation and Neonatal Heart regeneration.
    Wang Y; Li Y; Feng J; Liu W; Li Y; Liu J; Yin Q; Lian H; Liu L; Nie Y
    Theranostics; 2020; 10(20):9100-9112. PubMed ID: 32802181
    [TBL] [Abstract][Full Text] [Related]  

  • 54. In vivo monitoring of cardiomyocyte proliferation to identify chemical modifiers of heart regeneration.
    Choi WY; Gemberling M; Wang J; Holdway JE; Shen MC; Karlstrom RO; Poss KD
    Development; 2013 Feb; 140(3):660-6. PubMed ID: 23293297
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Hand2 elevates cardiomyocyte production during zebrafish heart development and regeneration.
    Schindler YL; Garske KM; Wang J; Firulli BA; Firulli AB; Poss KD; Yelon D
    Development; 2014 Aug; 141(16):3112-22. PubMed ID: 25038045
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Collagen XII Contributes to Epicardial and Connective Tissues in the Zebrafish Heart during Ontogenesis and Regeneration.
    Marro J; Pfefferli C; de Preux Charles AS; Bise T; Jaźwińska A
    PLoS One; 2016; 11(10):e0165497. PubMed ID: 27783651
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Methodologies for Inducing Cardiac Injury and Assaying Regeneration in Adult Zebrafish.
    Wang J; Poss KD
    Methods Mol Biol; 2016; 1451():225-35. PubMed ID: 27464811
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Vitamin D Stimulates Cardiomyocyte Proliferation and Controls Organ Size and Regeneration in Zebrafish.
    Han Y; Chen A; Umansky KB; Oonk KA; Choi WY; Dickson AL; Ou J; Cigliola V; Yifa O; Cao J; Tornini VA; Cox BD; Tzahor E; Poss KD
    Dev Cell; 2019 Mar; 48(6):853-863.e5. PubMed ID: 30713073
    [TBL] [Abstract][Full Text] [Related]  

  • 59. In vivo proximity labeling identifies cardiomyocyte protein networks during zebrafish heart regeneration.
    Pronobis MI; Zheng S; Singh SP; Goldman JA; Poss KD
    Elife; 2021 Mar; 10():. PubMed ID: 33764296
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Decellularized zebrafish cardiac extracellular matrix induces mammalian heart regeneration.
    Chen WC; Wang Z; Missinato MA; Park DW; Long DW; Liu HJ; Zeng X; Yates NA; Kim K; Wang Y
    Sci Adv; 2016 Nov; 2(11):e1600844. PubMed ID: 28138518
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.