BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 35652483)

  • 1. Semi-Synthesis of Chloroxaloterpin A and B and Their Antifungal Activity against
    Zhang L; Wang X; Bi Y; Yu Z
    J Agric Food Chem; 2022 Jun; 70(23):7070-7076. PubMed ID: 35652483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diterpenoids from Streptomyces sp. SN194 and Their Antifungal Activity against Botrytis cinerea.
    Bi Y; Yu Z
    J Agric Food Chem; 2016 Nov; 64(45):8525-8529. PubMed ID: 27794606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biological control of Botrytis cinerea on tomato plants using Streptomyces ahygroscopicus strain CK-15.
    Ge BB; Cheng Y; Liu Y; Liu BH; Zhang KC
    Lett Appl Microbiol; 2015 Dec; 61(6):596-602. PubMed ID: 26400053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antifungal compound, methyl hippurate from Bacillus velezensis CE 100 and its inhibitory effect on growth of Botrytis cinerea.
    Maung CEH; Lee HG; Cho JY; Kim KY
    World J Microbiol Biotechnol; 2021 Aug; 37(9):159. PubMed ID: 34420104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibitory effect of lactoferrin against gray mould on tomato plants caused by Botrytis cinerea and possible mechanisms of action.
    Wang J; Xia XM; Wang HY; Li PP; Wang KY
    Int J Food Microbiol; 2013 Feb; 161(3):151-7. PubMed ID: 23333340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro and in vivo antifungal activities of the essential oils of various plants against tomato grey mould disease agent Botrytis cinerea.
    Soylu EM; Kurt S; Soylu S
    Int J Food Microbiol; 2010 Oct; 143(3):183-9. PubMed ID: 20826038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The antifungal potential of the chelating agent EDTA against postharvest plant pathogen Botrytis cinerea.
    Yang D; Shi H; Zhang K; Liu X; Ma L
    Int J Food Microbiol; 2023 Mar; 388():110089. PubMed ID: 36682298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control Effect and Possible Mechanism of the Natural Compound Phenazine-1-Carboxamide against Botrytis cinerea.
    Zhang Y; Wang C; Su P; Liao X
    PLoS One; 2015; 10(10):e0140380. PubMed ID: 26460973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antifungal activity of valinomycin, a peptide antibiotic produced by Streptomyces sp. Strain M10 antagonistic to Botrytis cinerea.
    Park CN; Lee JM; Lee D; Kim BS
    J Microbiol Biotechnol; 2008 May; 18(5):880-4. PubMed ID: 18633285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crucial Role of the Ca
    Wang Y; Yu Y; Hou YP; Mao XW; Liu ZL; Cui J; Wang B; Xu S; Qian YY; Jiang YQ; Wei M; Song PP
    J Agric Food Chem; 2023 Jun; 71(25):9772-9781. PubMed ID: 37313981
    [No Abstract]   [Full Text] [Related]  

  • 11. Impact of environmental factors on Streptomyces spp. metabolites against Botrytis cinerea.
    Boukaew S; Yossan S; Cheirsilp B; Prasertsan P
    J Basic Microbiol; 2022 May; 62(5):611-622. PubMed ID: 35064583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibitory effect and possible mechanism of a Pseudomonas strain QBA5 against gray mold on tomato leaves and fruits caused by Botrytis cinerea.
    Gao P; Qin J; Li D; Zhou S
    PLoS One; 2018; 13(1):e0190932. PubMed ID: 29320571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of drimenol and synthetic derivatives on growth and germination of Botrytis cinerea: Evaluation of possible mechanism of action.
    Robles-Kelly C; Rubio J; Thomas M; Sedán C; Martinez R; Olea AF; Carrasco H; Taborga L; Silva-Moreno E
    Pestic Biochem Physiol; 2017 Sep; 141():50-56. PubMed ID: 28911740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antifungal activities of secondary metabolites isolated from liquid fermentations of Stereum hirsutum (Sh134-11) against Botrytis cinerea (grey mould agent).
    Aqueveque P; Céspedes CL; Becerra J; Aranda M; Sterner O
    Food Chem Toxicol; 2017 Nov; 109(Pt 2):1048-1054. PubMed ID: 28528973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fungicidal activity of novel quinazolin-6-ylcarboxylates and mode of action on Botrytis cinerea.
    Xu J; Yan D; Chen Y; Cai D; Huang F; Zhu L; Zhang X; Luan S; Xiao C; Huang Q
    Pest Manag Sci; 2023 Sep; 79(9):3022-3032. PubMed ID: 36966485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Primary Mode of Action of the Novel Sulfonamide Fungicide against
    Yan X; Chen S; Sun W; Zhou X; Yang D; Yuan H; Wang D
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163447
    [No Abstract]   [Full Text] [Related]  

  • 17. Streptomyces sp. FX13 inhibits fungicide-resistant Botrytis cinerea in vitro and in vivo by producing oligomycin A.
    Xiao L; Niu HJ; Qu TL; Zhang XF; Du FY
    Pestic Biochem Physiol; 2021 Jun; 175():104834. PubMed ID: 33993959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation and characteristics of protocatechuic acid from Paenibacillus elgii HOA73 against Botrytis cinerea on strawberry fruits.
    Nguyen XH; Naing KW; Lee YS; Moon JH; Lee JH; Kim KY
    J Basic Microbiol; 2015 May; 55(5):625-34. PubMed ID: 25081931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Natural Sesquiterpene Lactone as Source of Discovery of Novel Fungicidal Candidates: Structural Modification and Antifungal Activity Evaluation of Xanthatin Derived from
    Yang C; Li Y; Zhang Y; Hu Q; Liu Y; Li YF; Shi HC; Song LL; Cao H; Hao XJ; Zhi XY
    J Agric Food Chem; 2023 Jul; 71(29):11239-11251. PubMed ID: 37449982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergistic effect of the combined bio-fungicides ε-poly-l-lysine and chitooligosaccharide in controlling grey mould (Botrytis cinerea) in tomatoes.
    Sun G; Yang Q; Zhang A; Guo J; Liu X; Wang Y; Ma Q
    Int J Food Microbiol; 2018 Jul; 276():46-53. PubMed ID: 29656220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.