BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 35652497)

  • 1. Size Optimization of Organic Nanoparticles with Aggregation-Induced Emission Characteristics for Improved ROS Generation and Photodynamic Cancer Cell Ablation.
    Gan S; Wu W; Feng G; Wang Z; Liu B; Tang BZ
    Small; 2022 Jul; 18(26):e2202242. PubMed ID: 35652497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AIE material for photodynamic therapy.
    Saini V; Venkatesh V
    Prog Mol Biol Transl Sci; 2021; 185():45-73. PubMed ID: 34782107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Progress and trends of photodynamic therapy: From traditional photosensitizers to AIE-based photosensitizers.
    Wang S; Wang X; Yu L; Sun M
    Photodiagnosis Photodyn Ther; 2021 Jun; 34():102254. PubMed ID: 33713845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly Efficient Near-Infrared Photosensitizers with Aggregation-Induced Emission Characteristics: Rational Molecular Design and Photodynamic Cancer Cell Ablation.
    Chen D; Long Z; Zhong C; Chen L; Dang Y; Hu JJ; Lou X; Xia F
    ACS Appl Bio Mater; 2021 Jun; 4(6):5231-5239. PubMed ID: 35007005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. All-in-One Theranostic Platforms: Deep-Red AIE Nanocrystals to Target Dual-Organelles for Efficient Photodynamic Therapy.
    Xu R; Chi W; Zhao Y; Tang Y; Jing X; Wang Z; Zhou Y; Shen Q; Zhang J; Yang Z; Dang D; Meng L
    ACS Nano; 2022 Dec; 16(12):20151-20162. PubMed ID: 36250626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly Efficient Multifunctional Organic Photosensitizer with Aggregation-Induced Emission for
    Liao Y; Wang R; Wang S; Xie Y; Chen H; Huang R; Shao L; Zhu Q; Liu Y
    ACS Appl Mater Interfaces; 2021 Nov; 13(46):54783-54793. PubMed ID: 34763423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and structural regulation of AIE photosensitizers for imaging-guided photodynamic anti-tumor application.
    Jia S; Yuan H; Hu R
    Biomater Sci; 2022 Aug; 10(16):4443-4457. PubMed ID: 35789348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pure Organic AIE Nanoscintillator for X-ray Mediated Type I and Type II Photodynamic Therapy.
    Yu Y; Xiang L; Zhang X; Zhang L; Ni Z; Zhu ZH; Liu Y; Lan J; Liu W; Xie G; Feng G; Tang BZ
    Adv Sci (Weinh); 2023 Sep; 10(26):e2302395. PubMed ID: 37424049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aggregation-Induced Emission (AIE) Dots: Emerging Theranostic Nanolights.
    Feng G; Liu B
    Acc Chem Res; 2018 Jun; 51(6):1404-1414. PubMed ID: 29733571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cationization to boost both type I and type II ROS generation for photodynamic therapy.
    Yu Y; Wu S; Zhang L; Xu S; Dai C; Gan S; Xie G; Feng G; Tang BZ
    Biomaterials; 2022 Jan; 280():121255. PubMed ID: 34810034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combination of PEG-b-PAA Carrier and Efficient Cationic Photosensitizers for Photodynamic Therapy.
    Yang H; Shang Z; Shi Q; Gao J; Wang X; Hu F
    Chem Asian J; 2023 May; 18(10):e202300212. PubMed ID: 37029595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AIE-Active Photosensitizers: Manipulation of Reactive Oxygen Species Generation and Applications in Photodynamic Therapy.
    Yu H; Chen B; Huang H; He Z; Sun J; Wang G; Gu X; Tang BZ
    Biosensors (Basel); 2022 May; 12(5):. PubMed ID: 35624649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Triple-Jump Photodynamic Theranostics: MnO
    Wang Y; Li Y; Zhang Z; Wang L; Wang D; Tang BZ
    Adv Mater; 2021 Oct; 33(41):e2103748. PubMed ID: 34423484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent molecular design strategies for efficient photodynamic therapy and its synergistic therapy based on AIE photosensitizers.
    Liu J; Chen W; Zheng C; Hu F; Zhai J; Bai Q; Sun N; Qian G; Zhang Y; Dong K; Lu T
    Eur J Med Chem; 2022 Dec; 244():114843. PubMed ID: 36265281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Boosting the photodynamic therapy efficiency by using stimuli-responsive and AIE-featured nanoparticles.
    Li Y; Wu Q; Kang M; Song N; Wang D; Tang BZ
    Biomaterials; 2020 Feb; 232():119749. PubMed ID: 31918230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trojan Horse-Like Nano-AIE Aggregates Based on Homologous Targeting Strategy and Their Photodynamic Therapy in Anticancer Application.
    Li Y; Zhang R; Wan Q; Hu R; Ma Y; Wang Z; Hou J; Zhang W; Tang BZ
    Adv Sci (Weinh); 2021 Dec; 8(23):e2102561. PubMed ID: 34672122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theranostic Nanodots with Aggregation-Induced Emission Characteristic for Targeted and Image-Guided Photodynamic Therapy of Hepatocellular Carcinoma.
    Gao Y; Zheng QC; Xu S; Yuan Y; Cheng X; Jiang S; Kenry ; Yu Q; Song Z; Liu B; Li M
    Theranostics; 2019; 9(5):1264-1279. PubMed ID: 30867829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuning intramolecular charge transfer and spin-orbit coupling of AIE-active type-I photosensitizers for photodynamic therapy.
    Singh R; Chen DG; Wang CH; Wu CC; Hsu CH; Wu CH; Lai TY; Chou PT; Chen CT
    J Mater Chem B; 2022 Aug; 10(32):6228-6236. PubMed ID: 35920213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Good Steel Used in the Blade: Well-Tailored Type-I Photosensitizers with Aggregation-Induced Emission Characteristics for Precise Nuclear Targeting Photodynamic Therapy.
    Kang M; Zhang Z; Xu W; Wen H; Zhu W; Wu Q; Wu H; Gong J; Wang Z; Wang D; Tang BZ
    Adv Sci (Weinh); 2021 Jul; 8(14):e2100524. PubMed ID: 34021726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Near-Infrared Organic Fluorescent Nanoparticles for Long-term Monitoring and Photodynamic Therapy of Cancer.
    Xia Q; Chen Z; Zhou Y; Liu R
    Nanotheranostics; 2019; 3(2):156-165. PubMed ID: 31008024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.