These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 35652697)
1. Boosting Organic Afterglow Performance via a Two-Component Design Strategy Extracted from Macromolecular Self-Assembly. Li D; Wu M; Chen X; Liu J; Sun Y; Huang J; Zou Y; Wang X; Chen D; Zhang K J Phys Chem Lett; 2022 Jun; 13(22):5030-5039. PubMed ID: 35652697 [TBL] [Abstract][Full Text] [Related]
2. Achieving Visible-Light-Excitable Blue TADF-Type Afterglow via Delicate Control of Excited States in Difluoroboron β-Diketonate Systems. Chen X; Wang G; Piao X; Zhang K Chemistry; 2024 Mar; 30(18):e202303834. PubMed ID: 38267399 [TBL] [Abstract][Full Text] [Related]
3. Intense Organic Afterglow Enabled by Molecular Engineering in Dopant-Matrix Systems. Li X; Wang G; Li J; Sun Y; Deng X; Zhang K ACS Appl Mater Interfaces; 2022 Jan; 14(1):1587-1600. PubMed ID: 34963292 [TBL] [Abstract][Full Text] [Related]
4. TADF-Type Organic Afterglow. Wang X; Sun Y; Wang G; Li J; Li X; Zhang K Angew Chem Int Ed Engl; 2021 Jul; 60(31):17138-17147. PubMed ID: 34060200 [TBL] [Abstract][Full Text] [Related]
5. Manipulation of Organic Afterglow in Fluoranthene-Containing Dopant-Matrix Systems: From Conventional Room-Temperature Phosphorescence to Efficient Red TADF-Type Organic Afterglow. Xu Y; Yuan S; Wang G; Li J; Wang X; Li X; Ding S; Chen X; Zhang K Chemistry; 2023 Apr; 29(22):e202203670. PubMed ID: 36637100 [TBL] [Abstract][Full Text] [Related]
6. Unexpected long room-temperature phosphorescence lifetimes of up to 1.0 s observed in iodinated molecular systems. Li J; Wang X; Pan Y; Sun Y; Wang G; Zhang K Chem Commun (Camb); 2021 Sep; 57(70):8794-8797. PubMed ID: 34382623 [TBL] [Abstract][Full Text] [Related]
8. Dual-Mechanism Design Strategy for High-Efficiency and Long-Lived Organic Afterglow Materials. Wang G; Chen X; Zeng Y; Li X; Wang X; Zhang K J Am Chem Soc; 2024 Sep; 146(36):24871-24883. PubMed ID: 39213650 [TBL] [Abstract][Full Text] [Related]
9. Polymer-Based Room-Temperature Phosphorescence Materials Exhibiting Emission Lifetimes up to 4.6 s Under Ambient Conditions. Song X; Zhai X; Zeng Y; Wang G; Wang T; Li Y; Yan Q; Chan CY; Wang B; Zhang K Chemphyschem; 2024 Dec; 25(23):e202400522. PubMed ID: 39143702 [TBL] [Abstract][Full Text] [Related]
10. Dopant-Matrix Afterglow Systems: Manipulation of Room-Temperature Phosphorescence/Thermally Activated Delayed Fluorescence Afterglow Mechanism via Mismatch/Match of Intermolecular Charge Transfer between Dopants and Matrices. Mo Z; Wang G; Li J; Yan Q; Zhang K J Phys Chem Lett; 2023 Dec; 14(49):11142-11151. PubMed ID: 38054432 [TBL] [Abstract][Full Text] [Related]
11. Long-Lived Organic Room-Temperature Phosphorescence from Amorphous Polymer Systems. Guo J; Yang C; Zhao Y Acc Chem Res; 2022 Apr; 55(8):1160-1170. PubMed ID: 35394748 [TBL] [Abstract][Full Text] [Related]
12. Diboraanthracene-Doped Polymer Systems for Colour-Tuneable Room-Temperature Organic Afterglow. Jovaišaitė J; Kirschner S; Raišys S; Kreiza G; Baronas P; Juršėnas S; Wagner M Angew Chem Int Ed Engl; 2023 Jan; 62(4):e202215071. PubMed ID: 36413097 [TBL] [Abstract][Full Text] [Related]
13. Recent advances in the design of afterglow materials: mechanisms, structural regulation strategies and applications. Yang X; Waterhouse GIN; Lu S; Yu J Chem Soc Rev; 2023 Nov; 52(22):8005-8058. PubMed ID: 37880991 [TBL] [Abstract][Full Text] [Related]
14. Ultralong Organic Phosphorescence: From Material Design to Applications. Shi H; Yao W; Ye W; Ma H; Huang W; An Z Acc Chem Res; 2022 Dec; 55(23):3445-3459. PubMed ID: 36368944 [TBL] [Abstract][Full Text] [Related]
15. On-demand modulating afterglow color of water-soluble polymers through phosphorescence FRET for multicolor security printing. Peng H; Xie G; Cao Y; Zhang L; Yan X; Zhang X; Miao S; Tao Y; Li H; Zheng C; Huang W; Chen R Sci Adv; 2022 Apr; 8(15):eabk2925. PubMed ID: 35427159 [TBL] [Abstract][Full Text] [Related]
16. Thermally activated triplet exciton release for highly efficient tri-mode organic afterglow. Jin J; Jiang H; Yang Q; Tang L; Tao Y; Li Y; Chen R; Zheng C; Fan Q; Zhang KY; Zhao Q; Huang W Nat Commun; 2020 Feb; 11(1):842. PubMed ID: 32051404 [TBL] [Abstract][Full Text] [Related]
17. Narrowband Organic Afterglow via Phosphorescence Förster Resonance Energy Transfer for Multifunctional Applications. Zou X; Gan N; Dong M; Huo W; Lv A; Yao X; Yin C; Wang Z; Zhang Y; Chen H; Ma H; Gu L; An Z; Huang W Adv Mater; 2023 Sep; 35(36):e2210489. PubMed ID: 37390483 [TBL] [Abstract][Full Text] [Related]
18. Manipulation of Triplet Excited States in Two-Component Systems for High-Performance Organic Afterglow Materials. Li J; Wang G; Chen X; Li X; Wu M; Yuan S; Zou Y; Wang X; Zhang K Chemistry; 2022 Jun; 28(35):e202200852. PubMed ID: 35441409 [TBL] [Abstract][Full Text] [Related]
19. Direct Population of Triplet States for Efficient Organic Afterglow through the Intra/Intermolecular Heavy-Atom Effect. Yuan J; Wang Y; Zhou B; Xie W; Zheng B; Zhang J; Li P; Yu T; Qi Y; Tao Y; Chen R Molecules; 2024 Feb; 29(5):. PubMed ID: 38474526 [TBL] [Abstract][Full Text] [Related]
20. Sunlight-Activated Hour-Long Afterglow from Transparent and Flexible Polymers. Zhou Y; Zhang P; Liu Z; Yan W; Gao H; Liang G; Qin W Adv Mater; 2024 Apr; 36(16):e2312439. PubMed ID: 38281100 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]