These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 35652725)

  • 1. Spectral clustering of single-cell multi-omics data on multilayer graphs.
    Zhang S; Leistico JR; Cho RJ; Cheng JB; Song JS
    Bioinformatics; 2022 Jul; 38(14):3600-3608. PubMed ID: 35652725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. scBGEDA: deep single-cell clustering analysis via a dual denoising autoencoder with bipartite graph ensemble clustering.
    Wang Y; Yu Z; Li S; Bian C; Liang Y; Wong KC; Li X
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36734596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectral clustering based on learning similarity matrix.
    Park S; Zhao H
    Bioinformatics; 2018 Jun; 34(12):2069-2076. PubMed ID: 29432517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clustering single-cell multi-omics data via graph regularized multi-view ensemble learning.
    Chen F; Zou G; Wu Y; Ou-Yang L
    Bioinformatics; 2024 Mar; 40(4):. PubMed ID: 38547401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. scASGC: An adaptive simplified graph convolution model for clustering single-cell RNA-seq data.
    Wang S; Zhang Y; Zhang Y; Wu W; Ye L; Li Y; Su J; Pang S
    Comput Biol Med; 2023 Sep; 163():107152. PubMed ID: 37364529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DEMOC: a deep embedded multi-omics learning approach for clustering single-cell CITE-seq data.
    Zou G; Lin Y; Han T; Ou-Yang L
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36047285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-cell RNA-seq interpretations using evolutionary multiobjective ensemble pruning.
    Li X; Zhang S; Wong KC
    Bioinformatics; 2019 Aug; 35(16):2809-2817. PubMed ID: 30596898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FlowGrid enables fast clustering of very large single-cell RNA-seq data.
    Fang X; Ho JWK
    Bioinformatics; 2021 Dec; 38(1):282-283. PubMed ID: 34289014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GNN-based embedding for clustering scRNA-seq data.
    Ciortan M; Defrance M
    Bioinformatics; 2022 Jan; 38(4):1037-1044. PubMed ID: 34850828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SCHNEL: scalable clustering of high dimensional single-cell data.
    Abdelaal T; de Raadt P; Lelieveldt BPF; Reinders MJT; Mahfouz A
    Bioinformatics; 2020 Dec; 36(Suppl_2):i849-i856. PubMed ID: 33381821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DIMM-SC: a Dirichlet mixture model for clustering droplet-based single cell transcriptomic data.
    Sun Z; Wang T; Deng K; Wang XF; Lafyatis R; Ding Y; Hu M; Chen W
    Bioinformatics; 2018 Jan; 34(1):139-146. PubMed ID: 29036318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. scGAC: a graph attentional architecture for clustering single-cell RNA-seq data.
    Cheng Y; Ma X
    Bioinformatics; 2022 Apr; 38(8):2187-2193. PubMed ID: 35176138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sub-Cluster Identification through Semi-Supervised Optimization of Rare-Cell Silhouettes (SCISSORS) in single-cell RNA-sequencing.
    Leary JR; Xu Y; Morrison AB; Jin C; Shen EC; Kuhlers PC; Su Y; Rashid NU; Yeh JJ; Peng XL
    Bioinformatics; 2023 Aug; 39(8):. PubMed ID: 37498558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GMHCC: high-throughput analysis of biomolecular data using graph-based multiple hierarchical consensus clustering.
    Lu Y; Yu Z; Wang Y; Ma Z; Wong KC; Li X
    Bioinformatics; 2022 May; 38(11):3020-3028. PubMed ID: 35451457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-cell RNA sequencing data analysis based on non-uniform ε-neighborhood network.
    Jia J; Chen L
    Bioinformatics; 2022 Apr; 38(9):2459-2465. PubMed ID: 35188181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. scNAME: neighborhood contrastive clustering with ancillary mask estimation for scRNA-seq data.
    Wan H; Chen L; Deng M
    Bioinformatics; 2022 Mar; 38(6):1575-1583. PubMed ID: 34999761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectrum: fast density-aware spectral clustering for single and multi-omic data.
    John CR; Watson D; Barnes MR; Pitzalis C; Lewis MJ
    Bioinformatics; 2020 Feb; 36(4):1159-1166. PubMed ID: 31501851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PARC: ultrafast and accurate clustering of phenotypic data of millions of single cells.
    Stassen SV; Siu DMD; Lee KCM; Ho JWK; So HKH; Tsia KK
    Bioinformatics; 2020 May; 36(9):2778-2786. PubMed ID: 31971583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NEMO: cancer subtyping by integration of partial multi-omic data.
    Rappoport N; Shamir R
    Bioinformatics; 2019 Sep; 35(18):3348-3356. PubMed ID: 30698637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ragas: integration and enhanced visualization for single cell subcluster analysis.
    Balaji U; Rodríguez-Alcázar J; Balasubramanian P; Smitherman C; Baisch J; Pascual V; Gu J
    Bioinformatics; 2024 Jun; 40(6):. PubMed ID: 38867706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.