These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 35652758)

  • 61. Evolution of C4 plants: a new hypothesis for an interaction of CO2 and water relations mediated by plant hydraulics.
    Osborne CP; Sack L
    Philos Trans R Soc Lond B Biol Sci; 2012 Feb; 367(1588):583-600. PubMed ID: 22232769
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Modelling metabolic evolution on phenotypic fitness landscapes: a case study on C4 photosynthesis.
    Heckmann D
    Biochem Soc Trans; 2015 Dec; 43(6):1172-6. PubMed ID: 26614656
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Tracking the evolutionary rise of C4 metabolism.
    Sage RF
    J Exp Bot; 2016 May; 67(10):2919-22. PubMed ID: 27085185
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Promotion of cyclic electron transport around photosystem I during the evolution of NADP-malic enzyme-type C4 photosynthesis in the genus Flaveria.
    Nakamura N; Iwano M; Havaux M; Yokota A; Munekage YN
    New Phytol; 2013 Aug; 199(3):832-42. PubMed ID: 23627567
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Carbon isotope discrimination as a diagnostic tool for C4 photosynthesis in C3-C4 intermediate species.
    Alonso-Cantabrana H; von Caemmerer S
    J Exp Bot; 2016 May; 67(10):3109-21. PubMed ID: 26862154
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Promotion of Cyclic Electron Transport Around Photosystem I with the Development of C4 Photosynthesis.
    Munekage YN; Taniguchi YY
    Plant Cell Physiol; 2016 May; 57(5):897-903. PubMed ID: 26893472
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Effects of elevated CO2 on photosynthetic traits of native and invasive C3 and C4 grasses.
    Hager HA; Ryan GD; Kovacs HM; Newman JA
    BMC Ecol; 2016 May; 16():28. PubMed ID: 27246099
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The functional significance of C3-C4 intermediate traits in Heliotropium L. (Boraginaceae): gas exchange perspectives.
    Vogan PJ; Frohlich MW; Sage RF
    Plant Cell Environ; 2007 Oct; 30(10):1337-45. PubMed ID: 17727423
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Online CO2 and H2 O oxygen isotope fractionation allows estimation of mesophyll conductance in C4 plants, and reveals that mesophyll conductance decreases as leaves age in both C4 and C3 plants.
    Barbour MM; Evans JR; Simonin KA; von Caemmerer S
    New Phytol; 2016 May; 210(3):875-89. PubMed ID: 26778088
    [TBL] [Abstract][Full Text] [Related]  

  • 70. High C3 photosynthetic capacity and high intrinsic water use efficiency underlies the high productivity of the bioenergy grass Arundo donax.
    Webster RJ; Driever SM; Kromdijk J; McGrath J; Leakey AD; Siebke K; Demetriades-Shah T; Bonnage S; Peloe T; Lawson T; Long SP
    Sci Rep; 2016 Feb; 6():20694. PubMed ID: 26860066
    [TBL] [Abstract][Full Text] [Related]  

  • 71. C4 photosynthesis and water stress.
    Ghannoum O
    Ann Bot; 2009 Feb; 103(4):635-44. PubMed ID: 18552367
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Steady-state stomatal responses of C
    Zhen S; Bugbee B
    Plant Cell Environ; 2020 Dec; 43(12):3020-3032. PubMed ID: 32929764
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Photosynthetic, hydraulic and biomass properties in closely related C3 and C4 species.
    Kocacinar F
    Physiol Plant; 2015 Mar; 153(3):454-66. PubMed ID: 24930487
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Soil and plant water relations determine photosynthetic responses of C3 and C4 grasses in a semi-arid ecosystem under elevated CO2.
    Lecain DR; Morgan JA; Mosier AR; Nelson JA
    Ann Bot; 2003 Jul; 92(1):41-52. PubMed ID: 12754182
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The limiting factors and regulatory processes that control the environmental responses of C
    Johnson JE; Field CB; Berry JA
    Oecologia; 2021 Dec; 197(4):841-866. PubMed ID: 34714387
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Evolution of the C4 photosynthetic pathway: events at the cellular and molecular levels.
    Ludwig M
    Photosynth Res; 2013 Nov; 117(1-3):147-61. PubMed ID: 23708978
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The role of leaf width and conductances to CO
    Cano FJ; Sharwood RE; Cousins AB; Ghannoum O
    New Phytol; 2019 Aug; 223(3):1280-1295. PubMed ID: 31087798
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Antisense reduction of NADP-malic enzyme in Flaveria bidentis reduces flow of CO2 through the C4 cycle.
    Pengelly JJ; Tan J; Furbank RT; von Caemmerer S
    Plant Physiol; 2012 Oct; 160(2):1070-80. PubMed ID: 22846191
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Integrating stomatal physiology and morphology: evolution of stomatal control and development of future crops.
    Haworth M; Marino G; Loreto F; Centritto M
    Oecologia; 2021 Dec; 197(4):867-883. PubMed ID: 33515295
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Getting the most out of natural variation in C4 photosynthesis.
    Covshoff S; Burgess SJ; Kneřová J; Kümpers BM
    Photosynth Res; 2014 Feb; 119(1-2):157-67. PubMed ID: 23794170
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.