These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 35653011)

  • 1. Radiomics and machine learning analysis based on magnetic resonance imaging in the assessment of liver mucinous colorectal metastases.
    Granata V; Fusco R; De Muzio F; Cutolo C; Setola SV; Dell'Aversana F; Grassi F; Belli A; Silvestro L; Ottaiano A; Nasti G; Avallone A; Flammia F; Miele V; Tatangelo F; Izzo F; Petrillo A
    Radiol Med; 2022 Jul; 127(7):763-772. PubMed ID: 35653011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radiomics textural features by MR imaging to assess clinical outcomes following liver resection in colorectal liver metastases.
    Granata V; Fusco R; De Muzio F; Cutolo C; Setola SV; Grassi R; Grassi F; Ottaiano A; Nasti G; Tatangelo F; Pilone V; Miele V; Brunese MC; Izzo F; Petrillo A
    Radiol Med; 2022 May; 127(5):461-470. PubMed ID: 35347583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contrast MR-Based Radiomics and Machine Learning Analysis to Assess Clinical Outcomes following Liver Resection in Colorectal Liver Metastases: A Preliminary Study.
    Granata V; Fusco R; De Muzio F; Cutolo C; Setola SV; Dell' Aversana F; Ottaiano A; Avallone A; Nasti G; Grassi F; Pilone V; Miele V; Brunese L; Izzo F; Petrillo A
    Cancers (Basel); 2022 Feb; 14(5):. PubMed ID: 35267418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radiomics and machine learning analysis by computed tomography and magnetic resonance imaging in colorectal liver metastases prognostic assessment.
    Granata V; Fusco R; De Muzio F; Brunese MC; Setola SV; Ottaiano A; Cardone C; Avallone A; Patrone R; Pradella S; Miele V; Tatangelo F; Cutolo C; Maggialetti N; Caruso D; Izzo F; Petrillo A
    Radiol Med; 2023 Nov; 128(11):1310-1332. PubMed ID: 37697033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EOB-MR Based Radiomics Analysis to Assess Clinical Outcomes following Liver Resection in Colorectal Liver Metastases.
    Granata V; Fusco R; De Muzio F; Cutolo C; Setola SV; Dell'Aversana F; Ottaiano A; Nasti G; Grassi R; Pilone V; Miele V; Brunese MC; Tatangelo F; Izzo F; Petrillo A
    Cancers (Basel); 2022 Feb; 14(5):. PubMed ID: 35267544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine Learning and Radiomics Analysis for Tumor Budding Prediction in Colorectal Liver Metastases Magnetic Resonance Imaging Assessment.
    Granata V; Fusco R; Brunese MC; Ferrara G; Tatangelo F; Ottaiano A; Avallone A; Miele V; Normanno N; Izzo F; Petrillo A
    Diagnostics (Basel); 2024 Jan; 14(2):. PubMed ID: 38248029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CT-Based Radiomics Analysis to Predict Histopathological Outcomes Following Liver Resection in Colorectal Liver Metastases.
    Granata V; Fusco R; Setola SV; De Muzio F; Dell' Aversana F; Cutolo C; Faggioni L; Miele V; Izzo F; Petrillo A
    Cancers (Basel); 2022 Mar; 14(7):. PubMed ID: 35406419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radiomics and Machine Learning Analysis Based on Magnetic Resonance Imaging in the Assessment of Colorectal Liver Metastases Growth Pattern.
    Granata V; Fusco R; De Muzio F; Cutolo C; Mattace Raso M; Gabelloni M; Avallone A; Ottaiano A; Tatangelo F; Brunese MC; Miele V; Izzo F; Petrillo A
    Diagnostics (Basel); 2022 Apr; 12(5):. PubMed ID: 35626271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine learning and radiomics analysis by computed tomography in colorectal liver metastases patients for RAS mutational status prediction.
    Granata V; Fusco R; Setola SV; Brunese MC; Di Mauro A; Avallone A; Ottaiano A; Normanno N; Petrillo A; Izzo F
    Radiol Med; 2024 Jul; 129(7):957-966. PubMed ID: 38761342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine learning-based radiomics analysis in predicting RAS mutational status using magnetic resonance imaging.
    Granata V; Fusco R; Brunese MC; Di Mauro A; Avallone A; Ottaiano A; Izzo F; Normanno N; Petrillo A
    Radiol Med; 2024 Mar; 129(3):420-428. PubMed ID: 38308061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Treatment response prediction using MRI-based pre-, post-, and delta-radiomic features and machine learning algorithms in colorectal cancer.
    Shayesteh S; Nazari M; Salahshour A; Sandoughdaran S; Hajianfar G; Khateri M; Yaghobi Joybari A; Jozian F; Fatehi Feyzabad SH; Arabi H; Shiri I; Zaidi H
    Med Phys; 2021 Jul; 48(7):3691-3701. PubMed ID: 33894058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tumor classification of gastrointestinal liver metastases using CT-based radiomics and deep learning.
    Tharmaseelan H; Vellala AK; Hertel A; Tollens F; Rotkopf LT; Rink J; Woźnicki P; Ayx I; Bartling S; Nörenberg D; Schoenberg SO; Froelich MF
    Cancer Imaging; 2023 Oct; 23(1):95. PubMed ID: 37798797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preoperative classification of primary and metastatic liver cancer via machine learning-based ultrasound radiomics.
    Mao B; Ma J; Duan S; Xia Y; Tao Y; Zhang L
    Eur Radiol; 2021 Jul; 31(7):4576-4586. PubMed ID: 33447862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differentiation between cerebral alveolar echinococcosis and brain metastases with radiomics combined machine learning approach.
    Yimit Y; Yasin P; Tuersun A; Abulizi A; Jia W; Wang Y; Nijiati M
    Eur J Med Res; 2023 Dec; 28(1):577. PubMed ID: 38071384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radiomics-based classification of hepatocellular carcinoma and hepatic haemangioma on precontrast magnetic resonance images.
    Wu J; Liu A; Cui J; Chen A; Song Q; Xie L
    BMC Med Imaging; 2019 Mar; 19(1):23. PubMed ID: 30866850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Classification of pulmonary lesion based on multiparametric MRI: utility of radiomics and comparison of machine learning methods.
    Wang X; Wan Q; Chen H; Li Y; Li X
    Eur Radiol; 2020 Aug; 30(8):4595-4605. PubMed ID: 32222795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-sequence MRI radiomics of colorectal liver metastases: Which features are reproducible across readers?
    van der Reijd DJ; Chupetlovska K; van Dijk E; Westerink B; Monraats MA; Van Griethuysen JJM; Lambregts DMJ; Tissier R; Beets-Tan RGH; Benson S; Maas M
    Eur J Radiol; 2024 Mar; 172():111346. PubMed ID: 38309217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Comprehensive Machine Learning Benchmark Study for Radiomics-Based Survival Analysis of CT Imaging Data in Patients With Hepatic Metastases of CRC.
    Stüber AT; Coors S; Schachtner B; Weber T; Rügamer D; Bender A; Mittermeier A; Öcal O; Seidensticker M; Ricke J; Bischl B; Ingrisch M
    Invest Radiol; 2023 Dec; 58(12):874-881. PubMed ID: 37504498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine learning-based analysis of CT radiomics model for prediction of colorectal metachronous liver metastases.
    Taghavi M; Trebeschi S; Simões R; Meek DB; Beckers RCJ; Lambregts DMJ; Verhoef C; Houwers JB; van der Heide UA; Beets-Tan RGH; Maas M
    Abdom Radiol (NY); 2021 Jan; 46(1):249-256. PubMed ID: 32583138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of High-Risk Cytogenetic Status in Multiple Myeloma Based on Magnetic Resonance Imaging: Utility of Radiomics and Comparison of Machine Learning Methods.
    Liu J; Zeng P; Guo W; Wang C; Geng Y; Lang N; Yuan H
    J Magn Reson Imaging; 2021 Oct; 54(4):1303-1311. PubMed ID: 33979466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.