These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 35653013)

  • 1. Which method is more powerful in testing the relationship of theoretical constructs? A meta comparison of structural equation modeling and path analysis with weighted composites.
    Deng L; Yuan KH
    Behav Res Methods; 2023 Apr; 55(3):1460-1479. PubMed ID: 35653013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Signal-to-Noise Ratio in Estimating and Testing the Mediation Effect: Structural Equation Modeling versus Path Analysis with Weighted Composites.
    Yuan KH; Zhang Z; Wang L
    Psychometrika; 2024 Sep; 89(3):974-1006. PubMed ID: 38806853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. More powerful parameter tests? No, rather biased parameter estimates. Some reflections on path analysis with weighted composites.
    Schuberth F; Schamberger T; Henseler J
    Behav Res Methods; 2024 Apr; 56(4):4205-4215. PubMed ID: 37936011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Which method delivers greater signal-to-noise ratio: Structural equation modelling or regression analysis with weighted composites?
    Yuan KH; Fang Y
    Br J Math Stat Psychol; 2023 Nov; 76(3):646-678. PubMed ID: 37786372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Premature conclusions about the signal-to-noise ratio in structural equation modeling research: A commentary on Yuan and Fang (2023).
    Schuberth F; Schamberger T; Rönkkö M; Liu Y; Henseler J
    Br J Math Stat Psychol; 2023 Nov; 76(3):682-694. PubMed ID: 37070527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Global Least Squares Path Modeling: A Full-Information Alternative to Partial Least Squares Path Modeling.
    Hwang H; Cho G
    Psychometrika; 2020 Dec; 85(4):947-972. PubMed ID: 33346884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding Composite-Based Structural Equation Modeling Methods From the Perspective of Regression Component Analysis.
    Rigdon EE
    Multivariate Behav Res; 2024; 59(4):677-692. PubMed ID: 38591183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-stage path analysis with definition variables: An alternative framework to account for measurement error.
    Lai MHC; Hsiao YY
    Psychol Methods; 2022 Aug; 27(4):568-588. PubMed ID: 34881957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparative evaluation of factor- and component-based structural equation modelling approaches under (in)correct construct representations.
    Cho G; Sarstedt M; Hwang H
    Br J Math Stat Psychol; 2022 May; 75(2):220-251. PubMed ID: 34661902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimizing Detection of True Within-Person Effects for Intensive Measurement Designs: A Comparison of Multilevel SEM and Unit-Weighted Scale Scores.
    Rush J; Rast P; Hofer SM
    Behav Res Methods; 2020 Oct; 52(5):1883-1892. PubMed ID: 32072568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using structural equation modeling for network meta-analysis.
    Tu YK; Wu YC
    BMC Med Res Methodol; 2017 Jul; 17(1):104. PubMed ID: 28709406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An in-depth discussion and illustration of partial least squares structural equation modeling in health care.
    Avkiran NK
    Health Care Manag Sci; 2018 Sep; 21(3):401-408. PubMed ID: 28181112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Statistical estimation of structural equation models with a mixture of continuous and categorical observed variables.
    Li CH
    Behav Res Methods; 2021 Oct; 53(5):2191-2213. PubMed ID: 33791955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A robust alternative estimator for small to moderate sample SEM: Bias-corrected factor score path analysis.
    Kelcey B
    Addict Behav; 2019 Jul; 94():83-98. PubMed ID: 30501990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of Two Methods for Modeling Measurement Errors When Testing Interaction Effects With Observed Composite Scores.
    Hsiao YY; Kwok OM; Lai MHC
    Educ Psychol Meas; 2018 Apr; 78(2):181-202. PubMed ID: 29795952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Henseler-Ogasawara specification of composites in structural equation modeling: A tutorial.
    Schuberth F
    Psychol Methods; 2023 Aug; 28(4):843-859. PubMed ID: 34914475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating network meta-analysis and inconsistency using arm-parameterized model in structural equation modeling.
    Shih MC; Tu YK
    Res Synth Methods; 2019 Jun; 10(2):240-254. PubMed ID: 30834677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Meta-analytic structural equation modeling with moderating effects on SEM parameters.
    Jak S; Cheung MW
    Psychol Methods; 2020 Aug; 25(4):430-455. PubMed ID: 31670537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A unified model-implied instrumental variable approach for structural equation modeling with mixed variables.
    Jin S; Yang-Wallentin F; Bollen KA
    Psychometrika; 2021 Jun; 86(2):564-594. PubMed ID: 34097200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An approach to structural equation modeling with both factors and components: Integrated generalized structured component analysis.
    Hwang H; Cho G; Jung K; Falk CF; Flake JK; Jin MJ; Lee SH
    Psychol Methods; 2021 Jun; 26(3):273-294. PubMed ID: 32673042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.