These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 35653218)
1. Combined Deep Learning and Classical Potential Approach for Modeling Diffusion in UiO-66. Achar SK; Wardzala JJ; Bernasconi L; Zhang L; Johnson JK J Chem Theory Comput; 2022 Jun; 18(6):3593-3606. PubMed ID: 35653218 [TBL] [Abstract][Full Text] [Related]
2. Insights into the Gas Adsorption Mechanisms in Metal-Organic Frameworks from Classical Molecular Simulations. Pham T; Space B Top Curr Chem (Cham); 2020 Jan; 378(1):14. PubMed ID: 31933069 [TBL] [Abstract][Full Text] [Related]
3. Simultaneous size and defect control of metal-organic framework by deep eutectic solvent for efficient perfluoroalkyl substances adsorption: Delving into mechanism. Cheng L; Fan C; Deng W Chemosphere; 2024 Jun; 358():142155. PubMed ID: 38688351 [TBL] [Abstract][Full Text] [Related]
4. Self-propelled nanomotors based on hierarchical metal-organic framework composites for the removal of heavy metal ions. Yang W; Qiang Y; Du M; Cao Y; Wang Y; Zhang X; Yue T; Huang J; Li Z J Hazard Mater; 2022 Aug; 435():128967. PubMed ID: 35483266 [TBL] [Abstract][Full Text] [Related]
5. Cationic metal-organic frameworks as an efficient adsorbent for the removal of 2,4-dichlorophenoxyacetic acid from aqueous solutions. Wu G; Ma J; Li S; Wang S; Jiang B; Luo S; Li J; Wang X; Guan Y; Chen L Environ Res; 2020 Jul; 186():109542. PubMed ID: 32353788 [TBL] [Abstract][Full Text] [Related]
6. BTEX removal from aqueous solution with hydrophobic Zr metal organic frameworks. Navarro Amador R; Cirre L; Carboni M; Meyer D J Environ Manage; 2018 May; 214():17-22. PubMed ID: 29518592 [TBL] [Abstract][Full Text] [Related]
7. Gaussian approximation of dispersion potentials for efficient featurization and machine-learning predictions of metal-organic frameworks. Choi S; Sholl DS; Medford AJ J Chem Phys; 2022 Jun; 156(21):214108. PubMed ID: 35676126 [TBL] [Abstract][Full Text] [Related]
8. The origin of the measured chemical shift of Trepte K; Schaber J; Schwalbe S; Drache F; Senkovska I; Kaskel S; Kortus J; Brunner E; Seifert G Phys Chem Chem Phys; 2017 Apr; 19(15):10020-10027. PubMed ID: 28362453 [TBL] [Abstract][Full Text] [Related]
9. Adsorption behavior of a metal organic framework of University in Oslo 67 and its application to the extraction of sulfonamides in meat samples. Xia L; Dou Y; Gao J; Gao Y; Fan W; Li G; You J J Chromatogr A; 2020 May; 1619():460949. PubMed ID: 32057447 [TBL] [Abstract][Full Text] [Related]
10. Loading of the Model Amino Acid Leucine in UiO-66 and UiO-66-NH Butova VV; Burachevskaya OA; Muratidi MA; Surzhikova II; Zolotukhin PV; Medvedev PV; Gorban IE; Kuzharov AA; Soldatov MA Inorg Chem; 2021 Apr; 60(8):5694-5703. PubMed ID: 33830750 [TBL] [Abstract][Full Text] [Related]
11. Toward an ab Initio Description of Adsorbate Surface Dynamics. Sivakumar S; Kulkarni A J Phys Chem C Nanomater Interfaces; 2024 Aug; 128(31):13238-13248. PubMed ID: 39140094 [TBL] [Abstract][Full Text] [Related]
12. Surface imprinted polymer on a metal-organic framework for rapid and highly selective adsorption of sulfamethoxazole in environmental samples. Cheng G; Li X; Li X; Chen J; Liu Y; Zhao G; Zhu G J Hazard Mater; 2022 Feb; 423(Pt A):127087. PubMed ID: 34523475 [TBL] [Abstract][Full Text] [Related]
13. Adsorptive separation of xenon/krypton mixtures using a zirconium-based metal-organic framework with high hydrothermal and radioactive stabilities. Lee SJ; Yoon TU; Kim AR; Kim SY; Cho KH; Hwang YK; Yeon JW; Bae YS J Hazard Mater; 2016 Dec; 320():513-520. PubMed ID: 27597151 [TBL] [Abstract][Full Text] [Related]
14. Facile preparation of UiO-66@PPy nanostructures for rapid and efficient adsorption of fluoride: Adsorption characteristics and mechanisms. Liu D; Li Y; Liu C; Zhou Y Chemosphere; 2022 Feb; 289():133164. PubMed ID: 34875289 [TBL] [Abstract][Full Text] [Related]
15. The interplay of diffusional and electrophoretic transport mechanisms of charged solutes in the liquid film surrounding charged nonporous adsorbent particles employed in finite bath adsorption systems. Grimes BA; Liapis AI J Colloid Interface Sci; 2002 Apr; 248(2):504-20. PubMed ID: 16290557 [TBL] [Abstract][Full Text] [Related]
16. Adsorptive removal of pharmaceutical pollutants by defective metal organic framework UiO-66: Insight into the contribution of defects. Zhuang S; Wang J Chemosphere; 2021 Oct; 281():130997. PubMed ID: 34289635 [TBL] [Abstract][Full Text] [Related]
17. Quantum Informed Machine-Learning Potentials for Molecular Dynamics Simulations of CO Zheng B; Oliveira FL; Neumann Barros Ferreira R; Steiner M; Hamann H; Gu GX; Luan B ACS Nano; 2023 Mar; 17(6):5579-5587. PubMed ID: 36883740 [TBL] [Abstract][Full Text] [Related]
18. Hybrid Quantum Mechanical, Molecular Mechanical, and Machine Learning Potential for Computing Aqueous-Phase Adsorption Free Energies on Metal Surfaces. Zare M; Sahsah D; Saleheen M; Behler J; Heyden A J Chem Theory Comput; 2024 Sep; ():. PubMed ID: 39254514 [TBL] [Abstract][Full Text] [Related]
19. Enhancing Van der Waals Interactions of Functionalized UiO-66 with Non-polar Adsorbates: The Unique Effect of para Hydroxyl Groups. Tovar TM; Iordanov I; Sava Gallis DF; DeCoste JB Chemistry; 2018 Feb; 24(8):1931-1937. PubMed ID: 29227560 [TBL] [Abstract][Full Text] [Related]
20. Ensemble Effects in Adsorbate-Adsorbate Interactions in Microkinetic Modeling. Dietze EM; Grönbeck H J Chem Theory Comput; 2023 Feb; 19(3):1044-1049. PubMed ID: 36652690 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]