BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 35653432)

  • 1. Spectrally Resolved Single Particle Photoluminescence Microscopy Reveals Heterogeneous Photocorrosion Activity of Cuprous Oxide Microcrystals.
    Lee JK; Wu S; Lim PC; Zhang Z
    Nano Lett; 2022 Jun; 22(12):4654-4660. PubMed ID: 35653432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding the Role of Copper Vacancies in Photoelectrochemical CO
    Sequeda IN; Meléndez AM
    J Phys Chem Lett; 2022 Apr; 13(16):3667-3673. PubMed ID: 35438506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A cuprous oxide-reduced graphene oxide (Cu2O-rGO) composite photocatalyst for hydrogen generation: employing rGO as an electron acceptor to enhance the photocatalytic activity and stability of Cu2O.
    Tran PD; Batabyal SK; Pramana SS; Barber J; Wong LH; Loo SC
    Nanoscale; 2012 Jul; 4(13):3875-8. PubMed ID: 22653156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photocorrosion of Cuprous Oxide in Hydrogen Production: Rationalising Self-Oxidation or Self-Reduction.
    Toe CY; Zheng Z; Wu H; Scott J; Amal R; Ng YH
    Angew Chem Int Ed Engl; 2018 Oct; 57(41):13613-13617. PubMed ID: 30133948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photocatalytic and Adsorption Performances of Faceted Cuprous Oxide (Cu₂O) Particles for the Removal of Methyl Orange (MO) from Aqueous Media.
    Ho WCJ; Tay Q; Qi H; Huang Z; Li J; Chen Z
    Molecules; 2017 Apr; 22(4):. PubMed ID: 28441752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strategy for reducing the carriers transfer antagonistic effect between heterojunction and plasmonic effect and weakening photocorrosion of Cu
    Sun L; Li W; Lv G; Wang W; Chen S
    J Colloid Interface Sci; 2023 Jan; 630(Pt A):556-572. PubMed ID: 36270176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binary [Cu2O/MWCNT] and ternary [Cu2O/ZnO/MWCNT] nanocomposites: formation, characterization and catalytic performance in partial ethanol oxidation.
    Khanderi J; Contiu C; Engstler J; Hoffmann RC; Schneider JJ; Drochner A; Vogel H
    Nanoscale; 2011 Mar; 3(3):1102-12. PubMed ID: 21183989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of Cu
    Yang Z; Ma C; Wang W; Zhang M; Hao X; Chen S
    J Colloid Interface Sci; 2019 Dec; 557():156-167. PubMed ID: 31520996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative In Situ Monitoring of Cu-Atom Release by Cu
    Zindrou A; Deligiannakis Y
    Nanomaterials (Basel); 2023 May; 13(11):. PubMed ID: 37299676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Convenient Route to Well-Dispersed Cu2O Nanospheres and Their Use as Photocatalysts.
    Zheng H; Qin L; Lin H; Nie M; Li Y; Li Q
    J Nanosci Nanotechnol; 2015 Aug; 15(8):6063-8. PubMed ID: 26369199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxide Nanocrystal Model Catalysts.
    Huang W
    Acc Chem Res; 2016 Mar; 49(3):520-7. PubMed ID: 26938790
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oscillatory Reaction Activity of Single Cuprous Oxide Microparticles with NO
    Huang W; Xiang X; Jin L; He Y
    J Phys Chem Lett; 2022 Nov; 13(44):10342-10349. PubMed ID: 36314659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoreduction route for Cu
    Pham VV; Bui DP; Tran HH; Cao MT; Nguyen TK; Kim YS; Le VH
    RSC Adv; 2018 Mar; 8(22):12420-12427. PubMed ID: 35539414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A surfactant-free solvothermal synthesis of Cu2O microcrystals and their photocatalytic activity.
    Wang H; Lu Z; Lu D; Li C; Fang P; Zhou D
    Water Sci Technol; 2016; 73(10):2379-85. PubMed ID: 27191558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth of Cu particles on a Cu2O truncated octahedron: tuning of the Cu content for efficient glucose sensing.
    Wang G; Sun H; Ding L; Zhou G; Wang ZS
    Phys Chem Chem Phys; 2015 Oct; 17(37):24361-9. PubMed ID: 26330109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In-situ chemical vapor deposition to fabricate Cuprous oxide/copper sulfide core-shell flowers with boosted and stable wide-spectral region photocatalytic performance.
    Fu Y; Li Q; Liu J; Jiao Y; Hu S; Wang H; Xu S; Jiang B
    J Colloid Interface Sci; 2020 Jun; 570():143-152. PubMed ID: 32146241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controllable synthesis of Cu2O/Cu composites with stable photocatalytic properties.
    Liu X; Li F; Wang H; Yang J; Li Z; Wang Y; Jin H
    J Nanosci Nanotechnol; 2014 Jun; 14(6):4108-13. PubMed ID: 24738359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visible-light-driven photodegradation of sulfamethoxazole and methylene blue by Cu2O/rGO photocatalysts.
    Liu SH; Wei YS; Lu JS
    Chemosphere; 2016 Jul; 154():118-123. PubMed ID: 27043377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomistic determination of the surface structure of Cu
    Zhang R; Li L; Frazer L; Chang KB; Poeppelmeier KR; Chan MKY; Guest JR
    Phys Chem Chem Phys; 2018 Nov; 20(43):27456-27463. PubMed ID: 30357202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-term antibacterial stable reduced graphene oxide nanocomposites loaded with cuprous oxide nanoparticles.
    Yang Z; Hao X; Chen S; Ma Z; Wang W; Wang C; Yue L; Sun H; Shao Q; Murugadoss V; Guo Z
    J Colloid Interface Sci; 2019 Jan; 533():13-23. PubMed ID: 30144689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.