These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 35653503)

  • 1. Improving the Potential of Mean Force and Nonequilibrium Pulling Simulations by Simultaneous Alchemical Modifications.
    Reif MM; Zacharias M
    J Chem Theory Comput; 2022 Jun; 18(6):3873-3893. PubMed ID: 35653503
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combining Alchemical Transformation with a Physical Pathway to Accelerate Absolute Binding Free Energy Calculations of Charged Ligands to Enclosed Binding Sites.
    Cruz J; Wickstrom L; Yang D; Gallicchio E; Deng N
    J Chem Theory Comput; 2020 Apr; 16(4):2803-2813. PubMed ID: 32101691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding Modes of Ligands Using Enhanced Sampling (BLUES): Rapid Decorrelation of Ligand Binding Modes via Nonequilibrium Candidate Monte Carlo.
    Gill SC; Lim NM; Grinaway PB; Rustenburg AS; Fass J; Ross GA; Chodera JD; Mobley DL
    J Phys Chem B; 2018 May; 122(21):5579-5598. PubMed ID: 29486559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computing the binding affinity of a ligand buried deep inside a protein with the hybrid steered molecular dynamics.
    Villarreal OD; Yu L; Rodriguez RA; Chen LY
    Biochem Biophys Res Commun; 2017 Jan; 483(1):203-208. PubMed ID: 28034750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SAMPL7 TrimerTrip host-guest binding affinities from extensive alchemical and end-point free energy calculations.
    Huai Z; Yang H; Li X; Sun Z
    J Comput Aided Mol Des; 2021 Jan; 35(1):117-129. PubMed ID: 33037549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Absolute Protein Binding Free Energy Simulations for Ligands with Multiple Poses, a Thermodynamic Path That Avoids Exhaustive Enumeration of the Poses.
    Sakae Y; Zhang BW; Levy RM; Deng N
    J Comput Chem; 2020 Jan; 41(1):56-68. PubMed ID: 31621932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The SAMPL6 SAMPLing challenge: assessing the reliability and efficiency of binding free energy calculations.
    Rizzi A; Jensen T; Slochower DR; Aldeghi M; Gapsys V; Ntekoumes D; Bosisio S; Papadourakis M; Henriksen NM; de Groot BL; Cournia Z; Dickson A; Michel J; Gilson MK; Shirts MR; Mobley DL; Chodera JD
    J Comput Aided Mol Des; 2020 May; 34(5):601-633. PubMed ID: 31984465
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding Free Energies of Host-Guest Systems by Nonequilibrium Alchemical Simulations with Constrained Dynamics: Illustrative Calculations and Numerical Validation.
    Giovannelli E; Cioni M; Procacci P; Cardini G; Pagliai M; Volkov V; Chelli R
    J Chem Theory Comput; 2017 Dec; 13(12):5887-5899. PubMed ID: 29112430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How to deal with multiple binding poses in alchemical relative protein-ligand binding free energy calculations.
    Kaus JW; Harder E; Lin T; Abel R; McCammon JA; Wang L
    J Chem Theory Comput; 2015 Jun; 11(6):2670-9. PubMed ID: 26085821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Addressing Suboptimal Poses in Nonequilibrium Alchemical Calculations.
    Karrenbrock M; Rizzi V; Procacci P; Gervasio FL
    J Phys Chem B; 2024 Feb; 128(7):1595-1605. PubMed ID: 38323915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonbonded Force Field Parameters from MBIS Partitioning of the Molecular Electron Density Improve Binding Affinity Predictions of the T4-Lysozyme Double Mutant.
    Macaya L; González D; Vöhringer-Martinez E
    J Chem Inf Model; 2024 Apr; 64(8):3269-3277. PubMed ID: 38546407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Absolute FKBP binding affinities obtained via nonequilibrium unbinding simulations.
    Ytreberg FM
    J Chem Phys; 2009 Apr; 130(16):164906. PubMed ID: 19405629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding Free Energies of Host-Guest Systems by Nonequilibrium Alchemical Simulations with Constrained Dynamics: Theoretical Framework.
    Giovannelli E; Procacci P; Cardini G; Pagliai M; Volkov V; Chelli R
    J Chem Theory Comput; 2017 Dec; 13(12):5874-5886. PubMed ID: 28992706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Seeding the multi-dimensional nonequilibrium pulling for Hamiltonian variation: indirect nonequilibrium free energy simulations at QM levels.
    Sun Z; He Q
    Phys Chem Chem Phys; 2022 Apr; 24(15):8800-8819. PubMed ID: 35352744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Perturbation potentials to overcome order/disorder transitions in alchemical binding free energy calculations.
    Pal RK; Gallicchio E
    J Chem Phys; 2019 Sep; 151(12):124116. PubMed ID: 31575187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using the fast fourier transform in binding free energy calculations.
    Nguyen TH; Zhou HX; Minh DDL
    J Comput Chem; 2018 Apr; 39(11):621-636. PubMed ID: 29270990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Challenges Encountered Applying Equilibrium and Nonequilibrium Binding Free Energy Calculations.
    Baumann HM; Gapsys V; de Groot BL; Mobley DL
    J Phys Chem B; 2021 May; 125(17):4241-4261. PubMed ID: 33905257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduced Free Energy Perturbation/Hamiltonian Replica Exchange Molecular Dynamics Method with Unbiased Alchemical Thermodynamic Axis.
    Jiang W; Thirman J; Jo S; Roux B
    J Phys Chem B; 2018 Oct; 122(41):9435-9442. PubMed ID: 30253098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Method for Treating Significant Conformational Changes in Alchemical Free Energy Simulations of Protein-Ligand Binding.
    Liao J; Sergeeva AP; Harder ED; Wang L; Sampson JM; Honig B; Friesner RA
    J Chem Theory Comput; 2024 Oct; 20(19):8609-8623. PubMed ID: 39331379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tinker-OpenMM: Absolute and relative alchemical free energies using AMOEBA on GPUs.
    Harger M; Li D; Wang Z; Dalby K; Lagardère L; Piquemal JP; Ponder J; Ren P
    J Comput Chem; 2017 Sep; 38(23):2047-2055. PubMed ID: 28600826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.