BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 35653511)

  • 1. In silico prediction of chemical aquatic toxicity by multiple machine learning and deep learning approaches.
    Xu M; Yang H; Liu G; Tang Y; Li W
    J Appl Toxicol; 2022 Nov; 42(11):1766-1776. PubMed ID: 35653511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting acute aquatic toxicity of structurally diverse chemicals in fish using artificial intelligence approaches.
    Singh KP; Gupta S; Rai P
    Ecotoxicol Environ Saf; 2013 Sep; 95():221-33. PubMed ID: 23764236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In silico prediction of ocular toxicity of compounds using explainable machine learning and deep learning approaches.
    Zhou Y; Wang Z; Huang Z; Li W; Chen Y; Yu X; Tang Y; Liu G
    J Appl Toxicol; 2024 Jun; 44(6):892-907. PubMed ID: 38329145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Screening androgen receptor agonists of fish species using machine learning and molecular model in NORMAN water-relevant list.
    Long XB; Yao CR; Li SY; Zhang JG; Lu ZJ; Ma DD; Chen CE; Ying GG; Shi WJ
    J Hazard Mater; 2024 Apr; 468():133844. PubMed ID: 38394900
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Li F; Fan D; Wang H; Yang H; Li W; Tang Y; Liu G
    Toxicol Res (Camb); 2017 Nov; 6(6):831-842. PubMed ID: 30090546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel hybrid framework for metabolic pathways prediction based on the graph attention network.
    Yang Z; Liu J; Shah HA; Feng J
    BMC Bioinformatics; 2022 Sep; 23(Suppl 5):329. PubMed ID: 36171550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In silico prediction of chemical-induced hematotoxicity with machine learning and deep learning methods.
    Hua Y; Shi Y; Cui X; Li X
    Mol Divers; 2021 Aug; 25(3):1585-1596. PubMed ID: 34196933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing contaminant sensitivity of endangered and threatened aquatic species: part I. Acute toxicity of five chemicals.
    Dwyer FJ; Mayer FL; Sappington LC; Buckler DR; Bridges CM; Greer IE; Hardesty DK; Henke CE; Ingersoll CG; Kunz JL; Whites DW; Augspurger T; Mount DR; Hattala K; Neuderfer GN
    Arch Environ Contam Toxicol; 2005 Feb; 48(2):143-54. PubMed ID: 15772881
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MVS-GCN: A prior brain structure learning-guided multi-view graph convolution network for autism spectrum disorder diagnosis.
    Wen G; Cao P; Bao H; Yang W; Zheng T; Zaiane O
    Comput Biol Med; 2022 Mar; 142():105239. PubMed ID: 35066446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. QPoweredCompound2DeNovoDrugPropMax - a novel programmatic tool incorporating deep learning and
    Geoffrey A S B; Madaj R; Valluri PP
    J Biomol Struct Dyn; 2023 Mar; 41(5):1790-1797. PubMed ID: 35007471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-channel GCN ensembled machine learning model for molecular aqueous solubility prediction on a clean dataset.
    Deng C; Liang L; Xing G; Hua Y; Lu T; Zhang Y; Chen Y; Liu H
    Mol Divers; 2023 Jun; 27(3):1023-1035. PubMed ID: 35739374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical toxicity prediction based on semi-supervised learning and graph convolutional neural network.
    Chen J; Si YW; Un CW; Siu SWI
    J Cheminform; 2021 Nov; 13(1):93. PubMed ID: 34838140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A similarity-based QSAR model for predicting acute toxicity towards the fathead minnow (Pimephales promelas).
    Cassotti M; Ballabio D; Todeschini R; Consonni V
    SAR QSAR Environ Res; 2015; 26(3):217-43. PubMed ID: 25780951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In silico prediction of drug-induced ototoxicity using machine learning and deep learning methods.
    Huang X; Tang F; Hua Y; Li X
    Chem Biol Drug Des; 2021 Aug; 98(2):248-257. PubMed ID: 34013639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Environmental toxicity risk evaluation of nitroaromatic compounds: Machine learning driven binary/multiple classification and design of safe alternatives.
    Hao Y; Fan T; Sun G; Li F; Zhang N; Zhao L; Zhong R
    Food Chem Toxicol; 2022 Dec; 170():113461. PubMed ID: 36243219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A bioavailability model predicting the toxicity of nickel to rainbow trout (Oncorhynchus mykiss) and fathead minnow (Pimephales promelas) in synthetic and natural waters.
    Deleebeeck NM; De Schamphelaere KA; Janssen CR
    Ecotoxicol Environ Saf; 2007 May; 67(1):1-13. PubMed ID: 17174394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-task aquatic toxicity prediction model based on multi-level features fusion.
    Yang X; Sun J; Jin B; Lu Y; Cheng J; Jiang J; Zhao Q; Shuai J
    J Adv Res; 2024 Jun; ():. PubMed ID: 38844122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A deep learning based multi-model approach for predicting drug-like chemical compound's toxicity.
    Saravanan KM; Wan JF; Dai L; Zhang J; Zhang JZH; Zhang H
    Methods; 2024 Jun; 226():164-175. PubMed ID: 38702021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A deep learning architecture for metabolic pathway prediction.
    Baranwal M; Magner A; Elvati P; Saldinger J; Violi A; Hero AO
    Bioinformatics; 2020 Apr; 36(8):2547-2553. PubMed ID: 31879763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep Learning Based Regression and Multiclass Models for Acute Oral Toxicity Prediction with Automatic Chemical Feature Extraction.
    Xu Y; Pei J; Lai L
    J Chem Inf Model; 2017 Nov; 57(11):2672-2685. PubMed ID: 29019671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.