BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 35653511)

  • 41. Structural Analysis and Prediction of Hematotoxicity Using Deep Learning Approaches.
    Long TZ; Shi SH; Liu S; Lu AP; Liu ZQ; Li M; Hou TJ; Cao DS
    J Chem Inf Model; 2023 Jan; 63(1):111-125. PubMed ID: 36472475
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Implementing comprehensive machine learning models of multispecies toxicity assessment to improve regulation of organic compounds.
    He Y; Liu G; Hu S; Wang X; Jia J; Zhou H; Yan X
    J Hazard Mater; 2023 Sep; 458():131942. PubMed ID: 37390684
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Unsupervised domain selective graph convolutional network for preoperative prediction of lymph node metastasis in gastric cancer.
    Zhang Y; Yuan N; Zhang Z; Du J; Wang T; Liu B; Yang A; Lv K; Ma G; Lei B
    Med Image Anal; 2022 Jul; 79():102467. PubMed ID: 35537338
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A Generalized Bioavailability Model (gBAM) for Predicting Chronic Copper Toxicity to Freshwater Fish.
    Nys C; Vlaeminck K; Van Sprang P; De Schamphelaere KAC
    Environ Toxicol Chem; 2020 Dec; 39(12):2424-2436. PubMed ID: 32573793
    [TBL] [Abstract][Full Text] [Related]  

  • 45. FP2VEC: a new molecular featurizer for learning molecular properties.
    Jeon W; Kim D
    Bioinformatics; 2019 Dec; 35(23):4979-4985. PubMed ID: 31070725
    [TBL] [Abstract][Full Text] [Related]  

  • 46. MCPNET: Development of an interpretable deep learning model based on multiple conformations of the compound for predicting developmental toxicity.
    Cao C; Wang H; Yang JR; Chen Q; Guo YM; Chen JZ
    Comput Biol Med; 2024 Mar; 171():108037. PubMed ID: 38377716
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Out-of-the-box deep learning prediction of quantum-mechanical partial charges by graph representation and transfer learning.
    Jiang D; Sun H; Wang J; Hsieh CY; Li Y; Wu Z; Cao D; Wu J; Hou T
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35062020
    [TBL] [Abstract][Full Text] [Related]  

  • 48. What is the ecotoxicity of a given chemical for a given aquatic species? Predicting interactions between species and chemicals using recommender system techniques.
    Viljanen M; Minnema J; Wassenaar PNH; Rorije E; Peijnenburg W
    SAR QSAR Environ Res; 2023; 34(10):765-788. PubMed ID: 37670728
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Classifying chemical mode of action using gene networks and machine learning: a case study with the herbicide linuron.
    Ornostay A; Cowie AM; Hindle M; Baker CJ; Martyniuk CJ
    Comp Biochem Physiol Part D Genomics Proteomics; 2013 Dec; 8(4):263-74. PubMed ID: 24013142
    [TBL] [Abstract][Full Text] [Related]  

  • 50.
    Liu L; Yang H; Cai Y; Cao Q; Sun L; Wang Z; Li W; Liu G; Lee PW; Tang Y
    Toxicol Res (Camb); 2019 May; 8(3):341-352. PubMed ID: 31160968
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Predicting Chemical Carcinogens Using a Hybrid Neural Network Deep Learning Method.
    Limbu S; Dakshanamurthy S
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365881
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Fish Embryo Acute Toxicity Testing and the RTgill-W1 Cell Line as In Vitro Models for Whole-Effluent Toxicity (WET) Testing: An In Vitro/In Vivo Comparison of Chemicals Relevant for WET Testing.
    Scott J; Grewe R; Minghetti M
    Environ Toxicol Chem; 2022 Nov; 41(11):2721-2731. PubMed ID: 35942926
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Prediction of the acute toxicity (96-h LC50) of organic compounds to the fathead minnow (Pimephales promelas) using a group contribution method.
    Martin TM; Young DM
    Chem Res Toxicol; 2001 Oct; 14(10):1378-85. PubMed ID: 11599929
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Immobilized artificial membrane chromatography as a tool for the prediction of ecotoxicity of pesticides.
    Stergiopoulos C; Makarouni D; Tsantili-Kakoulidou A; Ochsenkühn-Petropoulou M; Tsopelas F
    Chemosphere; 2019 Jun; 224():128-139. PubMed ID: 30818191
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Antistroke Network Pharmacological Prediction of Xiaoshuan Tongluo Recipe Based on Drug-Target Interaction Based on Deep Learning.
    Zhou Y
    Comput Math Methods Med; 2022; 2022():6095964. PubMed ID: 35959347
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Large-scale comparison of machine learning methods for profiling prediction of kinase inhibitors.
    Wu J; Chen Y; Wu J; Zhao D; Huang J; Lin M; Wang L
    J Cheminform; 2024 Jan; 16(1):13. PubMed ID: 38291477
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A comparative analysis on the in vivo toxicity of copper nanoparticles in three species of freshwater fish.
    Song L; Vijver MG; Peijnenburg WJ; Galloway TS; Tyler CR
    Chemosphere; 2015 Nov; 139():181-9. PubMed ID: 26121603
    [TBL] [Abstract][Full Text] [Related]  

  • 58. GCN-BMP: Investigating graph representation learning for DDI prediction task.
    Chen X; Liu X; Wu J
    Methods; 2020 Jul; 179():47-54. PubMed ID: 32622985
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Quantitative Toxicity Prediction via Meta Ensembling of Multitask Deep Learning Models.
    Karim A; Riahi V; Mishra A; Newton MAH; Dehzangi A; Balle T; Sattar A
    ACS Omega; 2021 May; 6(18):12306-12317. PubMed ID: 34056383
    [TBL] [Abstract][Full Text] [Related]  

  • 60. QSAR model for predicting the toxicity of organic compounds to fathead minnow.
    Jia Q; Zhao Y; Yan F; Wang Q
    Environ Sci Pollut Res Int; 2018 Dec; 25(35):35420-35428. PubMed ID: 30350137
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.