BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 35653686)

  • 1. Resolving the Mechanisms of Soy Glycinin Self-Coacervation and Hollow-Condensate Formation.
    Chen N; Zhao Z; Wang Y; Dimova R
    ACS Macro Lett; 2020 Dec; 9(12):1844-1852. PubMed ID: 35653686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-Assembling Polypeptides in Complex Coacervation.
    Sathyavageeswaran A; Bonesso Sabadini J; Perry SL
    Acc Chem Res; 2024 Feb; 57(3):386-398. PubMed ID: 38252962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spontaneous Transition of Spherical Coacervate to Vesicle-Like Compartment.
    Choi H; Hong Y; Najafi S; Kim SY; Shea JE; Hwang DS; Choi YS
    Adv Sci (Weinh); 2024 Feb; 11(7):e2305978. PubMed ID: 38063842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Active Controlled and Tunable Coacervation Using Side-Chain Functional α-Helical Homopolypeptides.
    Scott WA; Gharakhanian EG; Bell AG; Evans D; Barun E; Houk KN; Deming TJ
    J Am Chem Soc; 2021 Nov; 143(43):18196-18203. PubMed ID: 34669392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. pH-Controlled Coacervate-Membrane Interactions within Liposomes.
    Last MGF; Deshpande S; Dekker C
    ACS Nano; 2020 Apr; 14(4):4487-4498. PubMed ID: 32239914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Soy glycinin microcapsules by simple coacervation method.
    Lazko J; Popineau Y; Legrand J
    Colloids Surf B Biointerfaces; 2004 Aug; 37(1-2):1-8. PubMed ID: 15450301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peptide-based coacervates in therapeutic applications.
    Ma L; Fang X; Wang C
    Front Bioeng Biotechnol; 2022; 10():1100365. PubMed ID: 36686257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluoroalcohol - Induced coacervates for selective enrichment and extraction of hydrophobic proteins.
    Koolivand A; Clayton S; Rion H; Oloumi A; O'Brien A; Khaledi MG
    J Chromatogr B Analyt Technol Biomed Life Sci; 2018 Apr; 1083():180-188. PubMed ID: 29549741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Triblock Proteins with Weakly Dimerizing Terminal Blocks and an Intrinsically Disordered Region for Rational Design of Condensate Properties.
    Fedorov D; Roas-Escalona N; Tolmachev D; Harmat AL; Scacchi A; Sammalkorpi M; Aranko AS; Linder MB
    Small; 2024 Mar; 20(13):e2306817. PubMed ID: 37964343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controllable coacervation of recombinantly produced spider silk protein using kosmotropic salts.
    Mohammadi P; Jonkergouw C; Beaune G; Engelhardt P; Kamada A; Timonen JVI; Knowles TPJ; Penttila M; Linder MB
    J Colloid Interface Sci; 2020 Feb; 560():149-160. PubMed ID: 31670097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-coacervation of modular squid beak proteins - a comparative study.
    Cai H; Gabryelczyk B; Manimekalai MSS; Grüber G; Salentinig S; Miserez A
    Soft Matter; 2017 Nov; 13(42):7740-7752. PubMed ID: 29043368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complex coacervation of supercharged proteins with polyelectrolytes.
    Obermeyer AC; Mills CE; Dong XH; Flores RJ; Olsen BD
    Soft Matter; 2016 Apr; 12(15):3570-81. PubMed ID: 26965053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coacervation of tropoelastin.
    Yeo GC; Keeley FW; Weiss AS
    Adv Colloid Interface Sci; 2011 Sep; 167(1-2):94-103. PubMed ID: 21081222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complex Coacervation of Soy Proteins, Isoflavones and Chitosan.
    Hsiao YH; Hsia SY; Chan YC; Hsieh JF
    Molecules; 2017 Jun; 22(6):. PubMed ID: 28632187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of protein self-association on complex coacervation with polysaccharide: a Monte Carlo study.
    Li Y; Huang Q
    J Phys Chem B; 2013 Mar; 117(9):2615-24. PubMed ID: 23414391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of protein charge patterning on complex coacervation.
    Zervoudis NA; Obermeyer AC
    Soft Matter; 2021 Jul; 17(27):6637-6645. PubMed ID: 34151335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-coacervation of ampholyte polymer chains as an efficient encapsulation strategy.
    Perro A; Giraud L; Coudon N; Shanmugathasan S; Lapeyre V; Goudeau B; Douliez JP; Ravaine V
    J Colloid Interface Sci; 2019 Jul; 548():275-283. PubMed ID: 31004960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular design of self-coacervation phenomena in block polyampholytes.
    Danielsen SPO; McCarty J; Shea JE; Delaney KT; Fredrickson GH
    Proc Natl Acad Sci U S A; 2019 Apr; 116(17):8224-8232. PubMed ID: 30948640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-coacervation of carboxymethyl chitosan as a pH-responsive encapsulation and delivery strategy.
    Jing H; Du X; Mo L; Wang H
    Int J Biol Macromol; 2021 Dec; 192():1169-1177. PubMed ID: 34678379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Liquid Crystal Coacervates Composed of Short Double-Stranded DNA and Cationic Peptides.
    Fraccia TP; Jia TZ
    ACS Nano; 2020 Nov; 14(11):15071-15082. PubMed ID: 32852935
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.