These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 35653701)

  • 21. Designing a hybrid electrode toward high energy density with a staged Li
    Hao J; Yang F; Zhang S; He H; Xia G; Liu Y; Didier C; Liu T; Pang WK; Peterson VK; Lu J; Guo Z
    Proc Natl Acad Sci U S A; 2020 Feb; 117(6):2815-2823. PubMed ID: 31996477
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Self-Activating, Capacitive Anion Intercalation Enables High-Power Graphite Cathodes.
    Wang G; Yu M; Wang J; Li D; Tan D; Löffler M; Zhuang X; Müllen K; Feng X
    Adv Mater; 2018 May; 30(20):e1800533. PubMed ID: 29602214
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Review of Multifunctional Separators: Stabilizing the Cathode and the Anode for Alkali (Li, Na, and K) Metal-Sulfur and Selenium Batteries.
    Hao H; Hutter T; Boyce BL; Watt J; Liu P; Mitlin D
    Chem Rev; 2022 May; 122(9):8053-8125. PubMed ID: 35349271
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Organosulfides: An Emerging Class of Cathode Materials for Rechargeable Lithium Batteries.
    Wang DY; Guo W; Fu Y
    Acc Chem Res; 2019 Aug; 52(8):2290-2300. PubMed ID: 31386341
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Operation Mechanism in Hybrid Mg-Li Batteries with TiNb
    Maletti S; Janson O; Herzog-Arbeitman A; Gonzalez Martinez IG; Buckan R; Fischer J; Senyshyn A; Missyul A; Etter M; Mikhailova D
    ACS Appl Mater Interfaces; 2021 Feb; 13(5):6309-6321. PubMed ID: 33527829
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Surface/Interfacial Structure and Chemistry of High-Energy Nickel-Rich Layered Oxide Cathodes: Advances and Perspectives.
    Hou P; Yin J; Ding M; Huang J; Xu X
    Small; 2017 Dec; 13(45):. PubMed ID: 28977732
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage.
    Zhao Y; Ding Y; Li Y; Peng L; Byon HR; Goodenough JB; Yu G
    Chem Soc Rev; 2015 Nov; 44(22):7968-96. PubMed ID: 26265165
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cation Co-Intercalation with Anions: The Origin of Low Capacities of Graphite Cathodes in Multivalent Electrolytes.
    Yang Y; Wang J; Du X; Jiang H; Du A; Ge X; Li N; Wang H; Zhang Y; Chen Z; Zhao J; Cui G
    J Am Chem Soc; 2023 Jun; 145(22):12093-12104. PubMed ID: 37227815
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Class of Sodium Transition-Metal Sulfide Cathodes With Anion Redox.
    He J; Bhargav A; Okasinski J; Manthiram A
    Adv Mater; 2024 Jun; ():e2403521. PubMed ID: 38879752
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dual Honeycomb-Superlattice Enables Double-High Activity and Reversibility of Anion Redox for Sodium-Ion Battery Layered Cathodes.
    Wang Q; Liao Y; Jin X; Cheng C; Chu S; Sheng C; Zhang L; Hu B; Guo S; Zhou H
    Angew Chem Int Ed Engl; 2022 Aug; 61(33):e202206625. PubMed ID: 35674734
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rechargeable Mg
    Hu X; Peng J; Xu F; Ding M
    ACS Appl Mater Interfaces; 2021 Dec; 13(48):57252-57263. PubMed ID: 34844407
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Definition of Redox Centers in Reactions of Lithium Intercalation in Li
    Li H; Ramakrishnan S; Freeland JW; McCloskey BD; Cabana J
    J Am Chem Soc; 2020 May; 142(18):8160-8173. PubMed ID: 32271552
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Revealing the Sulfur Redox Paths in a Li-S Battery by an In Situ Hyphenated Technique of Electrochemistry and Mass Spectrometry.
    Yu Z; Shao Y; Ma L; Liu C; Gu C; Liu J; He P; Li M; Nie Z; Peng Z; Shao Y
    Adv Mater; 2022 Feb; 34(7):e2106618. PubMed ID: 34862816
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mixed Cationic and Anionic Redox in Ni and Co Free Chalcogen-Based Cathode Chemistry for Li-Ion Batteries.
    Nagarajan S; Hwang S; Balasubramanian M; Thangavel NK; Arava LMR
    J Am Chem Soc; 2021 Sep; 143(38):15732-15744. PubMed ID: 34524818
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Self-Formed Hybrid Interphase Layer on Lithium Metal for High-Performance Lithium-Sulfur Batteries.
    Li G; Huang Q; He X; Gao Y; Wang D; Kim SH; Wang D
    ACS Nano; 2018 Feb; 12(2):1500-1507. PubMed ID: 29376330
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries.
    Tu Z; Nath P; Lu Y; Tikekar MD; Archer LA
    Acc Chem Res; 2015 Nov; 48(11):2947-56. PubMed ID: 26496667
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stabilizing the Oxygen Lattice and Reversible Oxygen Redox Chemistry through Structural Dimensionality in Lithium-Rich Cathode Oxides.
    Zhao E; Li Q; Meng F; Liu J; Wang J; He L; Jiang Z; Zhang Q; Yu X; Gu L; Yang W; Li H; Wang F; Huang X
    Angew Chem Int Ed Engl; 2019 Mar; 58(13):4323-4327. PubMed ID: 30710397
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Redox Catalytic and Quasi-Solid Sulfur Conversion for High-Capacity Lean Lithium Sulfur Batteries.
    Lu K; Liu Y; Chen J; Zhang Z; Cheng Y
    ACS Nano; 2019 Dec; 13(12):14540-14548. PubMed ID: 31742996
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multi-Electron Reactions Enabled by Anion-Based Redox Chemistry for High-Energy Multivalent Rechargeable Batteries.
    Li Z; Vinayan BP; Jankowski P; Njel C; Roy A; Vegge T; Maibach J; Lastra JMG; Fichtner M; Zhao-Karger Z
    Angew Chem Int Ed Engl; 2020 Jul; 59(28):11483-11490. PubMed ID: 32220137
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanisms of Degradation and Strategies for the Stabilization of Cathode-Electrolyte Interfaces in Li-Ion Batteries.
    Cabana J; Kwon BJ; Hu L
    Acc Chem Res; 2018 Feb; 51(2):299-308. PubMed ID: 29384354
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.