These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 35654003)

  • 1. Absorption enhancement in visible range from Fano resonant silicon nanoparticle arrays embedded in single crystal Mg:Er:LiNbO
    Ma C; Liu K; Ma C; Liu Y; Xu Y; Yu S
    Nanotechnology; 2022 Jun; 33(37):. PubMed ID: 35654003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of near-infrared photoluminescence in Mg:Er:LiNbO
    Ma C; Yu S; Lu F; Liu K; Xu Y; Ma C
    Nanotechnology; 2020 Aug; 31(33):335206. PubMed ID: 32357353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmonic nanoparticles embedded in single crystals synthesized by gold ion implantation for enhanced optical nonlinearity and efficient Q-switched lasing.
    Nie WJ; Zhang YX; Yu HH; Li R; He RY; Dong NN; Wang J; Hübner R; Böttger R; Zhou SQ; Amekura H; Chen F
    Nanoscale; 2018 Mar; 10(9):4228-4236. PubMed ID: 29412199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fano resonant all-dielectric core/shell nanoparticles with ultrahigh scattering directionality in the visible region.
    Tsuchimoto Y; Yano TA; Hayashi T; Hara M
    Opt Express; 2016 Jun; 24(13):14451-62. PubMed ID: 27410598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emission wavelength tuning of fluorescence by fine structural control of optical metamaterials with Fano resonance.
    Moritake Y; Kanamori Y; Hane K
    Sci Rep; 2016 Sep; 6():33208. PubMed ID: 27622503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fano resonance-induced negative optical scattering force on plasmonic nanoparticles.
    Chen H; Liu S; Zi J; Lin Z
    ACS Nano; 2015 Feb; 9(2):1926-35. PubMed ID: 25635617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of nanowire optical cavities as efficient photon absorbers.
    Kim SK; Song KD; Kempa TJ; Day RW; Lieber CM; Park HG
    ACS Nano; 2014 Apr; 8(4):3707-14. PubMed ID: 24617563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Color Toning of Mie Resonant Silicon Nanoparticle Color Inks.
    Okazaki T; Sugimoto H; Hinamoto T; Fujii M
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):13613-13619. PubMed ID: 33689264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical study on narrow Fano resonance of nanocrescent for the label-free detection of single molecules and single nanoparticles.
    Zheng C; Jia T; Zhao H; Xia Y; Zhang S; Feng D; Sun Z
    RSC Adv; 2018 Jan; 8(7):3381-3391. PubMed ID: 35542955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mie resonance-enhanced light absorption in periodic silicon nanopillar arrays.
    Bezares FJ; Long JP; Glembocki OJ; Guo J; Rendell RW; Kasica R; Shirey L; Owrutsky JC; Caldwell JD
    Opt Express; 2013 Nov; 21(23):27587-601. PubMed ID: 24514277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bimetallic non-alloyed NPs for improving the broadband optical absorption of thin amorphous silicon substrates.
    Tan CL; Jang SJ; Song YM; Alameh K; Lee YT
    Nanoscale Res Lett; 2014 Apr; 9(1):181. PubMed ID: 24725390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays.
    Wang ZY; Zhang RJ; Wang SY; Lu M; Chen X; Zheng YX; Chen LY; Ye Z; Wang CZ; Ho KM
    Sci Rep; 2015 Jan; 5():7810. PubMed ID: 25589290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance-Enhanced Textured Silicon Solar Cells Based on Plasmonic Light Scattering Using Silver and Indium Nanoparticles.
    Ho WJ; Su SY; Lee YY; Syu HJ; Lin CF
    Materials (Basel); 2015 Sep; 8(10):6668-6676. PubMed ID: 28793591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light harvesting of silicon nanostructure for solar cells application.
    Li Y; Yue L; Luo Y; Liu W; Li M
    Opt Express; 2016 Jul; 24(14):A1075-82. PubMed ID: 27410895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A study of laser-induced blue emission with nanosecond decay of silicon nanoparticles synthesized by a chemical etching method.
    Bagabas AA; Gondal MA; Dastageer MA; Al-Muhanna AA; Alanazi TH; Ababtain MA
    Nanotechnology; 2009 Sep; 20(35):355703. PubMed ID: 19671981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wavelength-band-tuning photodiodes by using various metallic nanoparticles.
    Hwang JD; Chan YD; Chou TC
    Nanotechnology; 2015 Nov; 26(46):465202. PubMed ID: 26508114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Colloidal Mie resonant silicon nanoparticles.
    Sugimoto H; Fujii M
    Nanotechnology; 2021 Aug; 32(45):. PubMed ID: 34343972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple Sharp Fano Resonances in a Deep-Subwavelength Spherical Hyperbolic Metamaterial Cavity.
    Gu P; Guo Y; Chen J; Zhang Z; Yan Z; Liu F; Tang C; Du W; Chen Z
    Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multilayer nanoparticle arrays for broad spectrum absorption enhancement in thin film solar cells.
    Krishnan A; Das S; Krishna SR; Khan MZ
    Opt Express; 2014 May; 22 Suppl 3():A800-11. PubMed ID: 24922387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmon-enhanced broadband absorption of MoS
    Zhou K; Song J; Lu L; Luo Z; Cheng Q
    Opt Express; 2019 Feb; 27(3):2305-2316. PubMed ID: 30732269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.