These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 35654003)

  • 21. Optical and surface enhanced Raman scattering properties of Au nanoparticles embedded in and located on a carbonaceous matrix.
    Prakash J; Kumar V; Kroon RE; Asokan K; Rigato V; Chae KH; Gautam S; Swart HC
    Phys Chem Chem Phys; 2016 Jan; 18(4):2468-80. PubMed ID: 26701612
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tuning light absorption in core/shell silicon nanowire photovoltaic devices through morphological design.
    Kim SK; Day RW; Cahoon JF; Kempa TJ; Song KD; Park HG; Lieber CM
    Nano Lett; 2012 Sep; 12(9):4971-6. PubMed ID: 22889329
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High Q-Factor Hybrid Metamaterial Waveguide Multi-Fano Resonance Sensor in the Visible Wavelength Range.
    Yang H; Chen Y; Liu M; Xiao G; Luo Y; Liu H; Li J; Yuan L
    Nanomaterials (Basel); 2021 Jun; 11(6):. PubMed ID: 34208583
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fano-Resonant, Asymmetric, Metamaterial-Assisted Tweezers for Single Nanoparticle Trapping.
    Kotsifaki DG; Truong VG; Chormaic SN
    Nano Lett; 2020 May; 20(5):3388-3395. PubMed ID: 32275440
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced second harmonic generation by photonic-plasmonic Fano-type coupling in nanoplasmonic arrays.
    Walsh GF; Dal Negro L
    Nano Lett; 2013 Jul; 13(7):3111-7. PubMed ID: 23800228
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-temperature stable plasmonic and cavity resonances in metal nanoparticle-decorated silicon nanopillars for strong broadband absorption in photothermal applications.
    Hou G; Wang Z; Ma H; Ji Y; Yu L; Xu J; Chen K
    Nanoscale; 2019 Aug; 11(31):14777-14784. PubMed ID: 31353390
    [TBL] [Abstract][Full Text] [Related]  

  • 27. T-shaped silicon waveguide coupled with a micro-ring resonator-based Fano resonance modulator.
    Xu Y; Lu L; Chen G; Liao J; Xu X; Ou J; Zhu L
    Appl Opt; 2022 Nov; 61(31):9217-9224. PubMed ID: 36607056
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ag nanoparticles embedded in Nd:YAG crystals irradiated with tilted beam of 200 MeV Xe ions: optical dichroism correlated to particle reshaping.
    Li R; Pang C; Amekura H; Ren F; Hübner R; Zhou S; Ishikawa N; Okubo N; Chen F
    Nanotechnology; 2018 Oct; 29(42):424001. PubMed ID: 30067227
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Active tuning of the Fano resonance from a Si nanosphere dimer by the substrate effect.
    Huang Y; Yan J; Ma C; Yang G
    Nanoscale Horiz; 2019 Jan; 4(1):148-157. PubMed ID: 32254150
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhanced absorptive characteristics of metal nanoparticle-coated silicon nanowires for solar cell applications.
    Zhou K; Jee SW; Guo Z; Liu S; Lee JH
    Appl Opt; 2011 Nov; 50(31):G63-8. PubMed ID: 22086049
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Orientation-controlled growth and optical properties of diverse Ag nanoparticles on Si(100) and Si(111) wafers.
    Wang RC; Lin YX; Huang MR; Chao CY
    Nanotechnology; 2013 Feb; 24(4):045601. PubMed ID: 23291468
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nonlinear features of Fano resonance: a QM/EM study.
    Sun J; Ding Z; Yu Y; Liang W
    Phys Chem Chem Phys; 2021 Aug; 23(30):15994-16004. PubMed ID: 34318831
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optical impedance matching using coupled plasmonic nanoparticle arrays.
    Spinelli P; Hebbink M; de Waele R; Black L; Lenzmann F; Polman A
    Nano Lett; 2011 Apr; 11(4):1760-5. PubMed ID: 21410242
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Diffractive coupling and plasmon-enhanced photocurrent generation in silicon.
    Uhrenfeldt C; Villesen TF; Johansen B; Jung J; Pedersen TG; Larsen AN
    Opt Express; 2013 Sep; 21 Suppl 5():A774-85. PubMed ID: 24104573
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhancement of plasmonic photovoltaics with pyramidal nanoparticles.
    Yassin HM; El-Batawy YM; Soliman EA
    Appl Opt; 2023 Mar; 62(8):1961-1969. PubMed ID: 37133081
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Directional Fano resonance in a silicon nanosphere dimer.
    Yan J; Liu P; Lin Z; Wang H; Chen H; Wang C; Yang G
    ACS Nano; 2015 Mar; 9(3):2968-80. PubMed ID: 25683067
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nonlinear Fano-Resonant Dielectric Metasurfaces.
    Yang Y; Wang W; Boulesbaa A; Kravchenko II; Briggs DP; Puretzky A; Geohegan D; Valentine J
    Nano Lett; 2015 Nov; 15(11):7388-93. PubMed ID: 26501777
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nanoring structure, spacing, and local dielectric sensitivity for plasmonic resonances in Fano resonant square lattices.
    Forcherio GT; Blake P; DeJarnette D; Roper DK
    Opt Express; 2014 Jul; 22(15):17791-803. PubMed ID: 25089400
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Omnidirectional and broadband absorption enhancement from trapezoidal Mie resonators in semiconductor metasurfaces.
    Pala RA; Butun S; Aydin K; Atwater HA
    Sci Rep; 2016 Sep; 6():31451. PubMed ID: 27641965
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Plasmonic Ag nanoparticles embedded in lithium tantalate crystal for ultrafast laser generation.
    Pang C; Li R; Li Z; Dong N; Wang J; Ren F; Chen F
    Nanotechnology; 2019 Aug; 30(33):334001. PubMed ID: 31013488
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.