These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 35654158)
1. Levels of nitramines and nitrosamines in lake drinking water close to a CO Norling MD; Clayer F; Gundersen CB Environ Res; 2022 Sep; 212(Pt D):113581. PubMed ID: 35654158 [TBL] [Abstract][Full Text] [Related]
2. Measurement of nitrosamine and nitramine formation from NOx reactions with amines during amine-based carbon dioxide capture for postcombustion carbon sequestration. Dai N; Shah AD; Hu L; Plewa MJ; McKague B; Mitch WA Environ Sci Technol; 2012 Sep; 46(17):9793-801. PubMed ID: 22831707 [TBL] [Abstract][Full Text] [Related]
3. Nitrosamines and Nitramines in Amine-Based Carbon Dioxide Capture Systems: Fundamentals, Engineering Implications, and Knowledge Gaps. Yu K; Mitch WA; Dai N Environ Sci Technol; 2017 Oct; 51(20):11522-11536. PubMed ID: 28946738 [TBL] [Abstract][Full Text] [Related]
4. Controlling Nitrosamines, Nitramines, and Amines in Amine-Based CO₂ Capture Systems with Continuous Ultraviolet and Ozone Treatment of Washwater. Dai N; Mitch WA Environ Sci Technol; 2015 Jul; 49(14):8878-86. PubMed ID: 26087660 [TBL] [Abstract][Full Text] [Related]
5. Human health risk assessment of nitrosamines and nitramines for potential application in CO2 capture. Ravnum S; Rundén-Pran E; Fjellsbø LM; Dusinska M Regul Toxicol Pharmacol; 2014 Jul; 69(2):250-5. PubMed ID: 24747397 [TBL] [Abstract][Full Text] [Related]
6. Comparative in vitro toxicity of nitrosamines and nitramines associated with amine-based carbon capture and storage. Wagner ED; Osiol J; Mitch WA; Plewa MJ Environ Sci Technol; 2014 Jul; 48(14):8203-11. PubMed ID: 24940705 [TBL] [Abstract][Full Text] [Related]
7. Effects of flue gas compositions on nitrosamine and nitramine formation in postcombustion CO2 capture systems. Dai N; Mitch WA Environ Sci Technol; 2014 Jul; 48(13):7519-26. PubMed ID: 24918477 [TBL] [Abstract][Full Text] [Related]
8. Amines and amine-related compounds in surface waters: a review of sources, concentrations and aquatic toxicity. Poste AE; Grung M; Wright RF Sci Total Environ; 2014 May; 481():274-9. PubMed ID: 24602912 [TBL] [Abstract][Full Text] [Related]
9. Application of ultraviolet, ozone, and advanced oxidation treatments to washwaters to destroy nitrosamines, nitramines, amines, and aldehydes formed during amine-based carbon capture. Shah AD; Dai N; Mitch WA Environ Sci Technol; 2013 Mar; 47(6):2799-808. PubMed ID: 23425146 [TBL] [Abstract][Full Text] [Related]
10. Genotoxic and mutagenic potential of nitramines. Fjellsbø LM; Verstraelen S; Kazimirova A; Van Rompay AR; Magdolenova Z; Dusinska M Environ Res; 2014 Oct; 134():39-45. PubMed ID: 25042035 [TBL] [Abstract][Full Text] [Related]
11. Modelling atmospheric oxidation of 2-aminoethanol (MEA) emitted from post-combustion capture using WRF-Chem. Karl M; Svendby T; Walker SE; Velken AS; Castell N; Solberg S Sci Total Environ; 2015 Sep; 527-528():185-202. PubMed ID: 25958366 [TBL] [Abstract][Full Text] [Related]
12. Soil sorption of two nitramines derived from amine-based CO Gundersen CB; Breedveld GD; Foseid L; Vogt RD Environ Sci Process Impacts; 2017 Jun; 19(6):812-821. PubMed ID: 28530292 [TBL] [Abstract][Full Text] [Related]
13. Hazard assessment of nitrosamine and nitramine by-products of amine-based CCS: alternative approaches. Buist HE; Devito S; Goldbohm RA; Stierum RH; Venhorst J; Kroese ED Regul Toxicol Pharmacol; 2015 Apr; 71(3):601-23. PubMed ID: 25604881 [TBL] [Abstract][Full Text] [Related]
14. Influence of amine structural characteristics on N-nitrosamine formation potential relevant to postcombustion CO2 capture systems. Dai N; Mitch WA Environ Sci Technol; 2013 Nov; 47(22):13175-83. PubMed ID: 24138561 [TBL] [Abstract][Full Text] [Related]
15. Occurrence of aromatic amines and N-nitrosamines in the different steps of a drinking water treatment plant. Jurado-Sánchez B; Ballesteros E; Gallego M Water Res; 2012 Sep; 46(14):4543-55. PubMed ID: 22703862 [TBL] [Abstract][Full Text] [Related]
16. Particulate Nitrosamines and Nitramines in Seoul and Their Major Sources: Primary Emission versus Secondary Formation. Choi NR; Ahn YG; Lee JY; Kim E; Kim S; Park SM; Song IH; Shin HJ; Kim YP Environ Sci Technol; 2021 Jun; 55(12):7841-7849. PubMed ID: 34041906 [TBL] [Abstract][Full Text] [Related]
17. Targeted electrochemical reduction of carcinogenic N-nitrosamines from emission control systems within CO Toma S; Omosebi A; Gao X; Abad K; Bhatnagar S; Qian D; Liu K; Thompson JG Chemosphere; 2023 Aug; 333():138915. PubMed ID: 37172623 [TBL] [Abstract][Full Text] [Related]
18. Spatial, temporal variability and carcinogenic health risk assessment of nitrosamines in a drinking water system in China. Luo Q; Bei E; Liu C; Deng YL; Miao Y; Qiu Y; Lu WQ; Chen C; Zeng Q Sci Total Environ; 2020 Sep; 736():139695. PubMed ID: 32497885 [TBL] [Abstract][Full Text] [Related]
19. Influence of Dissolved Metals on N-Nitrosamine Formation under Amine-based CO2 Capture Conditions. Wang Z; Mitch WA Environ Sci Technol; 2015 Oct; 49(19):11974-81. PubMed ID: 26335609 [TBL] [Abstract][Full Text] [Related]
20. Role of various factors affecting the photochemical treatment of Aqeel A; Lim HJ Environ Technol; 2020 Apr; 41(11):1391-1400. PubMed ID: 30339495 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]