These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 35654270)

  • 1. A text-mining tool generated title-abstract screening workload savings: performance evaluation versus single-human screening.
    Carey N; Harte M; Mc Cullagh L
    J Clin Epidemiol; 2022 Sep; 149():53-59. PubMed ID: 35654270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Technology-assisted title and abstract screening for systematic reviews: a retrospective evaluation of the Abstrackr machine learning tool.
    Gates A; Johnson C; Hartling L
    Syst Rev; 2018 Mar; 7(1):45. PubMed ID: 29530097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Faster title and abstract screening? Evaluating Abstrackr, a semi-automated online screening program for systematic reviewers.
    Rathbone J; Hoffmann T; Glasziou P
    Syst Rev; 2015 Jun; 4():80. PubMed ID: 26073974
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of text mining to reduce screening workload for injury-focused systematic reviews.
    Giummarra MJ; Lau G; Gabbe BJ
    Inj Prev; 2020 Feb; 26(1):55-60. PubMed ID: 31451565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine learning for screening prioritization in systematic reviews: comparative performance of Abstrackr and EPPI-Reviewer.
    Tsou AY; Treadwell JR; Erinoff E; Schoelles K
    Syst Rev; 2020 Apr; 9(1):73. PubMed ID: 32241297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Usefulness of machine learning softwares to screen titles of systematic reviews: a methodological study.
    Dos Reis AHS; de Oliveira ALM; Fritsch C; Zouch J; Ferreira P; Polese JC
    Syst Rev; 2023 Apr; 12(1):68. PubMed ID: 37061711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decoding semi-automated title-abstract screening: findings from a convenience sample of reviews.
    Gates A; Gates M; DaRosa D; Elliott SA; Pillay J; Rahman S; Vandermeer B; Hartling L
    Syst Rev; 2020 Nov; 9(1):272. PubMed ID: 33243276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The semi-automation of title and abstract screening: a retrospective exploration of ways to leverage Abstrackr's relevance predictions in systematic and rapid reviews.
    Gates A; Gates M; Sebastianski M; Guitard S; Elliott SA; Hartling L
    BMC Med Res Methodol; 2020 Jun; 20(1):139. PubMed ID: 32493228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance and usability of machine learning for screening in systematic reviews: a comparative evaluation of three tools.
    Gates A; Guitard S; Pillay J; Elliott SA; Dyson MP; Newton AS; Hartling L
    Syst Rev; 2019 Nov; 8(1):278. PubMed ID: 31727150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitivity and specificity of alternative screening methods for systematic reviews using text mining tools.
    Li J; Kabouji J; Bouhadoun S; Tanveer S; Filion KB; Gore G; Josephson CB; Kwon CS; Jette N; Bauer PR; Day GS; Subota A; Roberts JI; Lukmanji S; Sauro K; Ismaili AA; Rahmani F; Chelabi K; Kerdougli Y; Seulami NM; Soumana A; Khalil S; Maynard N; Keezer MR
    J Clin Epidemiol; 2023 Oct; 162():72-80. PubMed ID: 37506951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of a traditional systematic review approach with review-of-reviews and semi-automation as strategies to update the evidence.
    Reddy SM; Patel S; Weyrich M; Fenton J; Viswanathan M
    Syst Rev; 2020 Oct; 9(1):243. PubMed ID: 33076975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Text mining to support abstract screening for knowledge syntheses: a semi-automated workflow.
    Pham B; Jovanovic J; Bagheri E; Antony J; Ashoor H; Nguyen TT; Rios P; Robson R; Thomas SM; Watt J; Straus SE; Tricco AC
    Syst Rev; 2021 May; 10(1):156. PubMed ID: 34039433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aligning text mining and machine learning algorithms with best practices for study selection in systematic literature reviews.
    Popoff E; Besada M; Jansen JP; Cope S; Kanters S
    Syst Rev; 2020 Dec; 9(1):293. PubMed ID: 33308292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of cost-effectiveness analysis to compare the efficiency of study identification methods in systematic reviews.
    Shemilt I; Khan N; Park S; Thomas J
    Syst Rev; 2016 Aug; 5(1):140. PubMed ID: 27535658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Screening for in vitro systematic reviews: a comparison of screening methods and training of a machine learning classifier.
    Wilson E; Cruz F; Maclean D; Ghanawi J; McCann SK; Brennan PM; Liao J; Sena ES; Macleod M
    Clin Sci (Lond); 2023 Jan; 137(2):181-193. PubMed ID: 36630537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Can abstract screening workload be reduced using text mining? User experiences of the tool Rayyan.
    Olofsson H; Brolund A; Hellberg C; Silverstein R; Stenström K; Österberg M; Dagerhamn J
    Res Synth Methods; 2017 Sep; 8(3):275-280. PubMed ID: 28374510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unsupervised title and abstract screening for systematic review: a retrospective case-study using topic modelling methodology.
    Natukunda A; Muchene LK
    Syst Rev; 2023 Jan; 12(1):1. PubMed ID: 36597132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using text mining for study identification in systematic reviews: a systematic review of current approaches.
    O'Mara-Eves A; Thomas J; McNaught J; Miwa M; Ananiadou S
    Syst Rev; 2015 Jan; 4(1):5. PubMed ID: 25588314
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.