These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 35654437)
1. Investigation on Mechanical, Biocorrosion, and Biocompatibility Behavior of HAp-Assisted Sr-Based Mg Composites. Saha J; Pal K ACS Appl Bio Mater; 2022 Jun; 5(6):2608-2621. PubMed ID: 35654437 [TBL] [Abstract][Full Text] [Related]
2. In vitro and in vivo assessment of squeeze-cast Mg-Zn-Ca-Mn alloys for biomedical applications. Cho DH; Avey T; Nam KH; Dean D; Luo AA Acta Biomater; 2022 Sep; 150():442-455. PubMed ID: 35914693 [TBL] [Abstract][Full Text] [Related]
3. Mechanical, corrosion, and biocompatibility properties of Mg-Zr-Sr-Sc alloys for biodegradable implant applications. Munir K; Lin J; Wen C; Wright PFA; Li Y Acta Biomater; 2020 Jan; 102():493-507. PubMed ID: 31811958 [TBL] [Abstract][Full Text] [Related]
4. A biodegradable in situ Zn-Mg Tong X; Wang H; Zhu L; Han Y; Wang K; Li Y; Ma J; Lin J; Wen C; Huang S Acta Biomater; 2022 Jul; 146():478-494. PubMed ID: 35580830 [TBL] [Abstract][Full Text] [Related]
5. Microstructures, mechanical and corrosion properties of graphene nanoplatelet-reinforced zinc matrix composites for implant applications. Kabir H; Munir K; Wen C; Li Y Acta Biomater; 2023 Feb; 157():701-719. PubMed ID: 36476647 [TBL] [Abstract][Full Text] [Related]
6. Microstructures, mechanical properties, and degradation behaviors of heat-treated Mg-Sr alloys as potential biodegradable implant materials. Wang Y; Tie D; Guan R; Wang N; Shang Y; Cui T; Li J J Mech Behav Biomed Mater; 2018 Jan; 77():47-57. PubMed ID: 28888933 [TBL] [Abstract][Full Text] [Related]
7. Mechanical properties, corrosion behavior, and cytotoxicity of biodegradable Zn/Mg multilayered composites prepared by accumulative roll bonding process. Sun Q; Zhang D; Tong X; Lin J; Li Y; Wen C Acta Biomater; 2024 Jan; 173():509-525. PubMed ID: 38006909 [TBL] [Abstract][Full Text] [Related]
8. The effects of β-TCP on mechanical properties, corrosion behavior and biocompatibility of β-TCP/Zn-Mg composites. Pan C; Sun X; Xu G; Su Y; Liu D Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110397. PubMed ID: 31923980 [TBL] [Abstract][Full Text] [Related]
9. Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr. Li HF; Xie XH; Zheng YF; Cong Y; Zhou FY; Qiu KJ; Wang X; Chen SH; Huang L; Tian L; Qin L Sci Rep; 2015 May; 5():10719. PubMed ID: 26023878 [TBL] [Abstract][Full Text] [Related]
10. Impact of gadolinium on mechanical properties, corrosion resistance, and biocompatibility of Zn-1Mg-xGd alloys for biodegradable bone-implant applications. Tong X; Zhu L; Wang K; Shi Z; Huang S; Li Y; Ma J; Wen C; Lin J Acta Biomater; 2022 Apr; 142():361-373. PubMed ID: 35189378 [TBL] [Abstract][Full Text] [Related]
11. The microstructure, mechanical properties, corrosion performance and biocompatibility of hydroxyapatite reinforced ZK61 magnesium-matrix biological composite. Guo Y; Li G; Xu Y; Xu Z; Gang M; Sun G; Zhang Z; Yang X; Yu Z; Lian J; Ren L J Mech Behav Biomed Mater; 2021 Nov; 123():104759. PubMed ID: 34365100 [TBL] [Abstract][Full Text] [Related]
12. The influence of Sr on the microstructure, degradation and stress corrosion cracking of the Mg alloys - ZK40xSr. Chen L; Bin Y; Zou W; Wang X; Li W J Mech Behav Biomed Mater; 2017 Feb; 66():187-200. PubMed ID: 27894051 [TBL] [Abstract][Full Text] [Related]
13. In vitro and in vivo studies on zinc-hydroxyapatite composites as novel biodegradable metal matrix composite for orthopedic applications. Yang H; Qu X; Lin W; Wang C; Zhu D; Dai K; Zheng Y Acta Biomater; 2018 Apr; 71():200-214. PubMed ID: 29530820 [TBL] [Abstract][Full Text] [Related]
14. Investigation of the mechanical and degradation properties of Mg-Sr and Mg-Zn-Sr alloys for use as potential biodegradable implant materials. Brar HS; Wong J; Manuel MV J Mech Behav Biomed Mater; 2012 Mar; 7():87-95. PubMed ID: 22340688 [TBL] [Abstract][Full Text] [Related]
15. Investigation of mechanical properties and biocorrosion behavior of in situ and ex situ Mg composite for orthopedic implants. Tayebi M; Bizari D; Hassanzade Z Mater Sci Eng C Mater Biol Appl; 2020 Aug; 113():110974. PubMed ID: 32487391 [TBL] [Abstract][Full Text] [Related]
16. In Vitro and in Vivo Studies on Biomedical Magnesium Low-Alloying with Elements Gadolinium and Zinc for Orthopedic Implant Applications. Bian D; Deng J; Li N; Chu X; Liu Y; Li W; Cai H; Xiu P; Zhang Y; Guan Z; Zheng Y; Kou Y; Jiang B; Chen R ACS Appl Mater Interfaces; 2018 Feb; 10(5):4394-4408. PubMed ID: 29310434 [TBL] [Abstract][Full Text] [Related]
17. Degradable magnesium-based alloys for biomedical applications: The role of critical alloying elements. Chen Y; Dou J; Yu H; Chen C J Biomater Appl; 2019 May; 33(10):1348-1372. PubMed ID: 30854910 [TBL] [Abstract][Full Text] [Related]
18. Thermal exposure effects on the in vitro degradation and mechanical properties of Mg-Sr and Mg-Ca-Sr biodegradable implant alloys and the role of the microstructure. Bornapour M; Celikin M; Pekguleryuz M Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():16-24. PubMed ID: 25491955 [TBL] [Abstract][Full Text] [Related]