These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 35654516)

  • 41. [Study of the factors effecting surface-enhanced Raman scattering reporter-labeled immunogold colloids].
    Li SJ; Qiu LQ; Cao PG; Gu RA
    Guang Pu Xue Yu Guang Pu Fen Xi; 2004 Dec; 24(12):1575-8. PubMed ID: 15828331
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap.
    Lim DK; Jeon KS; Hwang JH; Kim H; Kwon S; Suh YD; Nam JM
    Nat Nanotechnol; 2011 May; 6(7):452-60. PubMed ID: 21623360
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A SERS-active microfluidic device with tunable surface plasmon resonances.
    Xu BB; Ma ZC; Wang H; Liu XQ; Zhang YL; Zhang XL; Zhang R; Jiang HB; Sun HB
    Electrophoresis; 2011 Nov; 32(23):3378-84. PubMed ID: 22072533
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Highly sensitive immunoassay based on Raman reporter-labeled immuno-Au aggregates and SERS-active immune substrate.
    Song C; Wang Z; Zhang R; Yang J; Tan X; Cui Y
    Biosens Bioelectron; 2009 Dec; 25(4):826-31. PubMed ID: 19765972
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Raman scattering of 4-aminobenzenethiol sandwiched between Ag nanoparticle and macroscopically smooth Au substrate: effects of size of Ag nanoparticles and the excitation wavelength.
    Kim K; Choi JY; Lee HB; Shin KS
    J Chem Phys; 2011 Sep; 135(12):124705. PubMed ID: 21974550
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Gold nanoparticle-paper as a three-dimensional surface enhanced Raman scattering substrate.
    Ngo YH; Li D; Simon GP; Garnier G
    Langmuir; 2012 Jun; 28(23):8782-90. PubMed ID: 22594710
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Rapid detection of mercury in food via rhodamine 6G signal using surface-enhanced Raman scattering coupled multivariate calibration.
    Hassan MM; Ahmad W; Zareef M; Rong Y; Xu Y; Jiao T; He P; Li H; Chen Q
    Food Chem; 2021 Oct; 358():129844. PubMed ID: 33940287
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Localized surface plasmon resonance and surface enhanced Raman scattering responses of Au@Ag core-shell nanorods with different thickness of Ag shell.
    Ma Y; Zhou J; Zou W; Jia Z; Petti L; Mormile P
    J Nanosci Nanotechnol; 2014 Jun; 14(6):4245-50. PubMed ID: 24738378
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Study of microplastics as sorbents for rapid detection of multiple antibiotics in water based on SERS technology.
    Shan J; Ren T; Li X; Jin M; Wang X
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Jan; 284():121779. PubMed ID: 36041262
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Bimetallic gold-silver nanoplate array as a highly active SERS substrate for detection of streptavidin/biotin assemblies.
    Bi L; Dong J; Xie W; Lu W; Tong W; Tao L; Qian W
    Anal Chim Acta; 2013 Dec; 805():95-100. PubMed ID: 24296148
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Development of an optimal filter substrate for the identification of small microplastic particles in food by micro-Raman spectroscopy.
    Oßmann BE; Sarau G; Schmitt SW; Holtmannspötter H; Christiansen SH; Dicke W
    Anal Bioanal Chem; 2017 Jun; 409(16):4099-4109. PubMed ID: 28439620
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Specific detection of Staphylococcus aureus infection and marker for Alzheimer disease by surface enhanced Raman spectroscopy using silver and gold nanoparticle-coated magnetic polystyrene beads.
    Prucek R; Panáček A; Gajdová Ž; Večeřová R; Kvítek L; Gallo J; Kolář M
    Sci Rep; 2021 Mar; 11(1):6240. PubMed ID: 33737512
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Near-infrared surface-enhanced-Raman-scattering-mediated detection of single optically trapped bacterial spores.
    Alexander TA; Pellegrino PM; Gillespie JB
    Appl Spectrosc; 2003 Nov; 57(11):1340-5. PubMed ID: 14658146
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Single nanoparticle based optical pH probe.
    Jensen RA; Sherin J; Emory SR
    Appl Spectrosc; 2007 Aug; 61(8):832-8. PubMed ID: 17716401
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Chemical Analysis of Microplastics and Nanoplastics: Challenges, Advanced Methods, and Perspectives.
    Ivleva NP
    Chem Rev; 2021 Oct; 121(19):11886-11936. PubMed ID: 34436873
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Surface enhanced Raman imaging: periodic arrays and individual metal nanoparticles.
    Beermann J; Novikov SM; Leosson K; Bozhevolnyi SI
    Opt Express; 2009 Jul; 17(15):12698-705. PubMed ID: 19654675
    [TBL] [Abstract][Full Text] [Related]  

  • 57. "Elastic" property of mesoporous silica shell: for dynamic surface enhanced Raman scattering ability monitoring of growing noble metal nanostructures via a simplified spatially confined growth method.
    Lin M; Wang Y; Sun X; Wang W; Chen L
    ACS Appl Mater Interfaces; 2015 Apr; 7(14):7516-25. PubMed ID: 25815901
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Detecting the release of plastic particles in packaged drinking water under simulated light irradiation using surface-enhanced Raman spectroscopy.
    Lin PY; Wu IH; Tsai CY; Kirankumar R; Hsieh S
    Anal Chim Acta; 2022 Mar; 1198():339516. PubMed ID: 35190129
    [TBL] [Abstract][Full Text] [Related]  

  • 59. High-Sensitive Assay of Nucleic Acid Using Tetrahedral DNA Probes and DNA Concatamers with a Surface-Enhanced Raman Scattering/Surface Plasmon Resonance Dual-Mode Biosensor Based on a Silver Nanorod-Covered Silver Nanohole Array.
    Song C; Jiang X; Yang Y; Zhang J; Larson S; Zhao Y; Wang L
    ACS Appl Mater Interfaces; 2020 Jul; 12(28):31242-31254. PubMed ID: 32608960
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Evanescent-wave excitation of surface-enhanced Raman scattering substrates by an optical-fiber taper.
    Su L; Lee TH; Elliott SR
    Opt Lett; 2009 Sep; 34(17):2685-7. PubMed ID: 19724532
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.