These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
377 related articles for article (PubMed ID: 35654956)
1. Faulty autolysosome acidification in Alzheimer's disease mouse models induces autophagic build-up of Aβ in neurons, yielding senile plaques. Lee JH; Yang DS; Goulbourne CN; Im E; Stavrides P; Pensalfini A; Chan H; Bouchet-Marquis C; Bleiwas C; Berg MJ; Huo C; Peddy J; Pawlik M; Levy E; Rao M; Staufenbiel M; Nixon RA Nat Neurosci; 2022 Jun; 25(6):688-701. PubMed ID: 35654956 [TBL] [Abstract][Full Text] [Related]
2. Autolysosomal acidification failure as a primary driver of Alzheimer disease pathogenesis. Lee JH; Nixon RA Autophagy; 2022 Nov; 18(11):2763-2764. PubMed ID: 35947489 [TBL] [Abstract][Full Text] [Related]
3. Neuronal-Targeted TFEB Accelerates Lysosomal Degradation of APP, Reducing Aβ Generation and Amyloid Plaque Pathogenesis. Xiao Q; Yan P; Ma X; Liu H; Perez R; Zhu A; Gonzales E; Tripoli DL; Czerniewski L; Ballabio A; Cirrito JR; Diwan A; Lee JM J Neurosci; 2015 Sep; 35(35):12137-51. PubMed ID: 26338325 [TBL] [Abstract][Full Text] [Related]
4. Fibrillar Aβ triggers microglial proteome alterations and dysfunction in Alzheimer mouse models. Sebastian Monasor L; Müller SA; Colombo AV; Tanrioever G; König J; Roth S; Liesz A; Berghofer A; Piechotta A; Prestel M; Saito T; Saido TC; Herms J; Willem M; Haass C; Lichtenthaler SF; Tahirovic S Elife; 2020 Jun; 9():. PubMed ID: 32510331 [TBL] [Abstract][Full Text] [Related]
5. Lysosomal Dysfunction in Down Syndrome Is APP-Dependent and Mediated by APP-βCTF (C99). Jiang Y; Sato Y; Im E; Berg M; Bordi M; Darji S; Kumar A; Mohan PS; Bandyopadhyay U; Diaz A; Cuervo AM; Nixon RA J Neurosci; 2019 Jul; 39(27):5255-5268. PubMed ID: 31043483 [TBL] [Abstract][Full Text] [Related]
6. Haplodeficiency of Cathepsin D does not affect cerebral amyloidosis and autophagy in APP/PS1 transgenic mice. Cheng S; Wani WY; Hottman DA; Jeong A; Cao D; LeBlanc KJ; Saftig P; Zhang J; Li L J Neurochem; 2017 Jul; 142(2):297-304. PubMed ID: 28429406 [TBL] [Abstract][Full Text] [Related]
7. Reversal of autophagy dysfunction in the TgCRND8 mouse model of Alzheimer's disease ameliorates amyloid pathologies and memory deficits. Yang DS; Stavrides P; Mohan PS; Kaushik S; Kumar A; Ohno M; Schmidt SD; Wesson D; Bandyopadhyay U; Jiang Y; Pawlik M; Peterhoff CM; Yang AJ; Wilson DA; St George-Hyslop P; Westaway D; Mathews PM; Levy E; Cuervo AM; Nixon RA Brain; 2011 Jan; 134(Pt 1):258-77. PubMed ID: 21186265 [TBL] [Abstract][Full Text] [Related]
8. Autophagy-lysosomal-associated neuronal death in neurodegenerative disease. Nixon RA Acta Neuropathol; 2024 Sep; 148(1):42. PubMed ID: 39259382 [TBL] [Abstract][Full Text] [Related]
9. Dynamic changes of autophagic flux induced by Abeta in the brain of postmortem Alzheimer's disease patients, animal models and cell models. Long Z; Chen J; Zhao Y; Zhou W; Yao Q; Wang Y; He G Aging (Albany NY); 2020 Jun; 12(11):10912-10930. PubMed ID: 32535554 [TBL] [Abstract][Full Text] [Related]
10. The role of microglial cells and astrocytes in fibrillar plaque evolution in transgenic APP(SW) mice. Wegiel J; Wang KC; Imaki H; Rubenstein R; Wronska A; Osuchowski M; Lipinski WJ; Walker LC; LeVine H Neurobiol Aging; 2001; 22(1):49-61. PubMed ID: 11164276 [TBL] [Abstract][Full Text] [Related]
11. Increased Alzheimer's disease-like pathology in the APP/ PS1ΔE9 mouse model lacking Nrf2 through modulation of autophagy. Joshi G; Gan KA; Johnson DA; Johnson JA Neurobiol Aging; 2015 Feb; 36(2):664-79. PubMed ID: 25316599 [TBL] [Abstract][Full Text] [Related]
12. Transgenic expression of a ratiometric autophagy probe specifically in neurons enables the interrogation of brain autophagy in vivo. Lee JH; Rao MV; Yang DS; Stavrides P; Im E; Pensalfini A; Huo C; Sarkar P; Yoshimori T; Nixon RA Autophagy; 2019 Mar; 15(3):543-557. PubMed ID: 30269645 [TBL] [Abstract][Full Text] [Related]
13. Aβ accumulation causes MVB enlargement and is modelled by dominant negative VPS4A. Willén K; Edgar JR; Hasegawa T; Tanaka N; Futter CE; Gouras GK Mol Neurodegener; 2017 Aug; 12(1):61. PubMed ID: 28835279 [TBL] [Abstract][Full Text] [Related]
14. Mesenchymal stem cells enhance autophagy and increase β-amyloid clearance in Alzheimer disease models. Shin JY; Park HJ; Kim HN; Oh SH; Bae JS; Ha HJ; Lee PH Autophagy; 2014 Jan; 10(1):32-44. PubMed ID: 24149893 [TBL] [Abstract][Full Text] [Related]
15. [Alzheimer disease: cellular and molecular aspects]. Octave JN Bull Mem Acad R Med Belg; 2005; 160(10-12):445-9; discussion 450-1. PubMed ID: 16768248 [TBL] [Abstract][Full Text] [Related]
16. β‑asarone modulates Beclin‑1, LC3 and p62 expression to attenuate Aβ40 and Aβ42 levels in APP/PS1 transgenic mice with Alzheimer's disease. Deng M; Huang L; Zhong X Mol Med Rep; 2020 May; 21(5):2095-2102. PubMed ID: 32186763 [TBL] [Abstract][Full Text] [Related]
17. Vascular endothelial growth factor (VEGF) affects processing of amyloid precursor protein and beta-amyloidogenesis in brain slice cultures derived from transgenic Tg2576 mouse brain. Bürger S; Noack M; Kirazov LP; Kirazov EP; Naydenov CL; Kouznetsova E; Yafai Y; Schliebs R Int J Dev Neurosci; 2009 Oct; 27(6):517-23. PubMed ID: 19589380 [TBL] [Abstract][Full Text] [Related]
18. beta-amyloid deposits in transgenic mice expressing human beta-amyloid precursor protein have the same characteristics as those in Alzheimer's disease. Terai K; Iwai A; Kawabata S; Tasaki Y; Watanabe T; Miyata K; Yamaguchi T Neuroscience; 2001; 104(2):299-310. PubMed ID: 11377835 [TBL] [Abstract][Full Text] [Related]
19. Intracellular amyloid-β accumulation in calcium-binding protein-deficient neurons leads to amyloid-β plaque formation in animal model of Alzheimer's disease. Moon M; Hong HS; Nam DW; Baik SH; Song H; Kook SY; Kim YS; Lee J; Mook-Jung I J Alzheimers Dis; 2012; 29(3):615-28. PubMed ID: 22269161 [TBL] [Abstract][Full Text] [Related]
20. Human tau increases amyloid β plaque size but not amyloid β-mediated synapse loss in a novel mouse model of Alzheimer's disease. Jackson RJ; Rudinskiy N; Herrmann AG; Croft S; Kim JM; Petrova V; Ramos-Rodriguez JJ; Pitstick R; Wegmann S; Garcia-Alloza M; Carlson GA; Hyman BT; Spires-Jones TL Eur J Neurosci; 2016 Dec; 44(12):3056-3066. PubMed ID: 27748574 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]