BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 35654976)

  • 1. Genomic insights into the recent chromosome reduction of autopolyploid sugarcane Saccharum spontaneum.
    Zhang Q; Qi Y; Pan H; Tang H; Wang G; Hua X; Wang Y; Lin L; Li Z; Li Y; Yu F; Yu Z; Huang Y; Wang T; Ma P; Dou M; Sun Z; Wang Y; Wang H; Zhang X; Yao W; Wang Y; Liu X; Wang M; Wang J; Deng Z; Xu J; Yang Q; Liu Z; Chen B; Zhang M; Ming R; Zhang J
    Nat Genet; 2022 Jun; 54(6):885-896. PubMed ID: 35654976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L.
    Zhang J; Zhang X; Tang H; Zhang Q; Hua X; Ma X; Zhu F; Jones T; Zhu X; Bowers J; Wai CM; Zheng C; Shi Y; Chen S; Xu X; Yue J; Nelson DR; Huang L; Li Z; Xu H; Zhou D; Wang Y; Hu W; Lin J; Deng Y; Pandey N; Mancini M; Zerpa D; Nguyen JK; Wang L; Yu L; Xin Y; Ge L; Arro J; Han JO; Chakrabarty S; Pushko M; Zhang W; Ma Y; Ma P; Lv M; Chen F; Zheng G; Xu J; Yang Z; Deng F; Chen X; Liao Z; Zhang X; Lin Z; Lin H; Yan H; Kuang Z; Zhong W; Liang P; Wang G; Yuan Y; Shi J; Hou J; Lin J; Jin J; Cao P; Shen Q; Jiang Q; Zhou P; Ma Y; Zhang X; Xu R; Liu J; Zhou Y; Jia H; Ma Q; Qi R; Zhang Z; Fang J; Fang H; Song J; Wang M; Dong G; Wang G; Chen Z; Ma T; Liu H; Dhungana SR; Huss SE; Yang X; Sharma A; Trujillo JH; Martinez MC; Hudson M; Riascos JJ; Schuler M; Chen LQ; Braun DM; Li L; Yu Q; Wang J; Wang K; Schatz MC; Heckerman D; Van Sluys MA; Souza GM; Moore PH; Sankoff D; VanBuren R; Paterson AH; Nagai C; Ming R
    Nat Genet; 2018 Nov; 50(11):1565-1573. PubMed ID: 30297971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of a Saccharum spontaneum with a basic chromosome number of x = 10 provides new insights on genome evolution in genus Saccharum.
    Meng Z; Han J; Lin Y; Zhao Y; Lin Q; Ma X; Wang J; Zhang M; Zhang L; Yang Q; Wang K
    Theor Appl Genet; 2020 Jan; 133(1):187-199. PubMed ID: 31587087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative structural analysis of Bru1 region homeologs in Saccharum spontaneum and S. officinarum.
    Zhang J; Sharma A; Yu Q; Wang J; Li L; Zhu L; Zhang X; Chen Y; Ming R
    BMC Genomics; 2016 Jun; 17():446. PubMed ID: 27287040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sugarcane genome architecture decrypted with chromosome-specific oligo probes.
    Piperidis N; D'Hont A
    Plant J; 2020 Sep; 103(6):2039-2051. PubMed ID: 32537783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three founding ancestral genomes involved in the origin of sugarcane.
    Pompidor N; Charron C; Hervouet C; Bocs S; Droc G; Rivallan R; Manez A; Mitros T; Swaminathan K; Glaszmann JC; Garsmeur O; D'Hont A
    Ann Bot; 2021 May; 127(6):827-840. PubMed ID: 33637991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A BAC library of the SP80-3280 sugarcane variety (saccharum sp.) and its inferred microsynteny with the sorghum genome.
    Figueira TR; Okura V; Rodrigues da Silva F; Jose da Silva M; Kudrna D; Ammiraju JS; Talag J; Wing R; Arruda P
    BMC Res Notes; 2012 Apr; 5():185. PubMed ID: 22524198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and characterization of centromeric repetitive DNA sequences in Saccharum spontaneum.
    Zhang W; Zuo S; Li Z; Meng Z; Han J; Song J; Pan YB; Wang K
    Sci Rep; 2017 Jan; 7():41659. PubMed ID: 28134354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequence Evolution, Abundance, and Chromosomal Distribution of Ty1-copia Retrotransposons in the Saccharum spontaneum Genome.
    Yang S; Zeng K; Chen K; Zhao X; Wu J; Huang Y; Zhang M; Deng Z
    Cytogenet Genome Res; 2020; 160(5):272-282. PubMed ID: 32516773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comprehensively Characterizing the Cytological Features of
    Meng Z; Zhang Z; Yan T; Lin Q; Wang Y; Huang W; Huang Y; Li Z; Yu Q; Wang J; Wang K
    Front Plant Sci; 2018; 9():1624. PubMed ID: 30459801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconstruction of karyotypic evolution in Saccharum spontaneum species by comparative oligo-FISH mapping.
    Meng Z; Wang F; Xie Q; Li R; Shen H; Li H
    BMC Plant Biol; 2022 Dec; 22(1):599. PubMed ID: 36539690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative Analysis of Homologous Sequences of
    Sharma A; Song J; Lin Q; Singh R; Ramos N; Wang K; Zhang J; Ming R; Yu Q
    Front Plant Sci; 2018; 9():1414. PubMed ID: 30319674
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromosome Painting Provides Insights Into the Genome Structure and Evolution of Sugarcane.
    Meng Z; Wang Q; Khurshid H; Raza G; Han J; Wang B; Wang K
    Front Plant Sci; 2021; 12():731664. PubMed ID: 34512706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative genomics revealed the gene evolution and functional divergence of magnesium transporter families in Saccharum.
    Wang Y; Hua X; Xu J; Chen Z; Fan T; Zeng Z; Wang H; Hour AL; Yu Q; Ming R; Zhang J
    BMC Genomics; 2019 Jan; 20(1):83. PubMed ID: 30678642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phylogenetic Analysis of Different Ploidy Saccharum spontaneum Based on rDNA-ITS Sequences.
    Liu X; Li X; Liu H; Xu C; Lin X; Li C; Deng Z
    PLoS One; 2016; 11(3):e0151524. PubMed ID: 26986847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the cold tolerance of Saccharum spontaneum L. clones with different ploidy levels on the basis of morphological and physiological indices.
    Yang HL; Yu XH; Wang CF; Yang Y; Wang XH; Yang QH
    Plant Biol (Stuttg); 2020 Jul; 22(4):623-633. PubMed ID: 32145146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent polyploidization events in three Saccharum founding species.
    Zhang J; Zhang Q; Li L; Tang H; Zhang Q; Chen Y; Arrow J; Zhang X; Wang A; Miao C; Ming R
    Plant Biotechnol J; 2019 Jan; 17(1):264-274. PubMed ID: 29878497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mosaic monoploid reference sequence for the highly complex genome of sugarcane.
    Garsmeur O; Droc G; Antonise R; Grimwood J; Potier B; Aitken K; Jenkins J; Martin G; Charron C; Hervouet C; Costet L; Yahiaoui N; Healey A; Sims D; Cherukuri Y; Sreedasyam A; Kilian A; Chan A; Van Sluys MA; Swaminathan K; Town C; Bergès H; Simmons B; Glaszmann JC; van der Vossen E; Henry R; Schmutz J; D'Hont A
    Nat Commun; 2018 Jul; 9(1):2638. PubMed ID: 29980662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Species-specific abundant retrotransposons elucidate the genomic composition of modern sugarcane cultivars.
    Huang Y; Chen H; Han J; Zhang Y; Ma S; Yu G; Wang Z; Wang K
    Chromosoma; 2020 Mar; 129(1):45-55. PubMed ID: 31848693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comprehensive molecular cytogenetic analysis of the genome architecture in modern sugarcane cultivars.
    Wang K; Cheng H; Han J; Esh A; Liu J; Zhang Y; Wang B
    Chromosome Res; 2022 Mar; 30(1):29-41. PubMed ID: 34988746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.