BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 35654979)

  • 21. RNA interference trigger variants: getting the most out of RNA for RNA interference-based therapeutics.
    Snead NM; Rossi JJ
    Nucleic Acid Ther; 2012 Jun; 22(3):139-46. PubMed ID: 22703279
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Therapeutic potential of chemically modified siRNA: Recent trends.
    Selvam C; Mutisya D; Prakash S; Ranganna K; Thilagavathi R
    Chem Biol Drug Des; 2017 Nov; 90(5):665-678. PubMed ID: 28378934
    [TBL] [Abstract][Full Text] [Related]  

  • 23. RNA interference in the era of nucleic acid therapeutics.
    Jadhav V; Vaishnaw A; Fitzgerald K; Maier MA
    Nat Biotechnol; 2024 Mar; 42(3):394-405. PubMed ID: 38409587
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Budding Alliance of Nanotechnology in RNA Interference Therapeutics.
    Kumawat A; Dapse P; Kumar N; Mishra DK; Maheshwari R; Bhattacharya P; Tekade RK
    Curr Pharm Des; 2018; 24(23):2632-2643. PubMed ID: 30084328
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lipid Nanoparticle Technology for Clinical Translation of siRNA Therapeutics.
    Kulkarni JA; Witzigmann D; Chen S; Cullis PR; van der Meel R
    Acc Chem Res; 2019 Sep; 52(9):2435-2444. PubMed ID: 31397996
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chemical and structural modifications of RNAi therapeutics.
    Ku SH; Jo SD; Lee YK; Kim K; Kim SH
    Adv Drug Deliv Rev; 2016 Sep; 104():16-28. PubMed ID: 26549145
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Polyethylenimines for RNAi-mediated gene targeting in vivo and siRNA delivery to the lung.
    Günther M; Lipka J; Malek A; Gutsch D; Kreyling W; Aigner A
    Eur J Pharm Biopharm; 2011 Apr; 77(3):438-49. PubMed ID: 21093588
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Systemic Delivery of Folate-PEG siRNA Lipopolyplexes with Enhanced Intracellular Stability for In Vivo Gene Silencing in Leukemia.
    Lee DJ; Kessel E; Lehto T; Liu X; Yoshinaga N; Padari K; Chen YC; Kempter S; Uchida S; Rädler JO; Pooga M; Sheu MT; Kataoka K; Wagner E
    Bioconjug Chem; 2017 Sep; 28(9):2393-2409. PubMed ID: 28772071
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Harnessing a physiologic mechanism for siRNA delivery with mimetic lipoprotein particles.
    Nakayama T; Butler JS; Sehgal A; Severgnini M; Racie T; Sharman J; Ding F; Morskaya SS; Brodsky J; Tchangov L; Kosovrasti V; Meys M; Nechev L; Wang G; Peng CG; Fang Y; Maier M; Rajeev KG; Li R; Hettinger J; Barros S; Clausen V; Zhang X; Wang Q; Hutabarat R; Dokholyan NV; Wolfrum C; Manoharan M; Kotelianski V; Stoffel M; Sah DW
    Mol Ther; 2012 Aug; 20(8):1582-9. PubMed ID: 22850721
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of nanoparticle conjugation on gene silencing by RNA interference.
    Singh N; Agrawal A; Leung AK; Sharp PA; Bhatia SN
    J Am Chem Soc; 2010 Jun; 132(24):8241-3. PubMed ID: 20518524
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Liver cancer cells as the model for developing liver-targeted RNAi therapeutics.
    Hou B; Qin L; Huang L
    Biochem Biophys Res Commun; 2023 Feb; 644():85-94. PubMed ID: 36640667
    [TBL] [Abstract][Full Text] [Related]  

  • 32. RNA interference-mediated gene silencing of pleiotrophin through polyethylenimine-complexed small interfering RNAs in vivo exerts antitumoral effects in glioblastoma xenografts.
    Grzelinski M; Urban-Klein B; Martens T; Lamszus K; Bakowsky U; Höbel S; Czubayko F; Aigner A
    Hum Gene Ther; 2006 Jul; 17(7):751-66. PubMed ID: 16839274
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Construction of simple and efficient siRNA validation systems for screening and identification of effective RNAi-targeted sequences from mammalian genes.
    Tsai WH; Chang WT
    Methods Mol Biol; 2014; 1101():321-38. PubMed ID: 24233788
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of RNA interference-based therapeutics and application of multi-target small interfering RNAs.
    Li T; Wu M; Zhu YY; Chen J; Chen L
    Nucleic Acid Ther; 2014 Aug; 24(4):302-12. PubMed ID: 24796432
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Advanced siRNA Designs Further Improve In Vivo Performance of GalNAc-siRNA Conjugates.
    Foster DJ; Brown CR; Shaikh S; Trapp C; Schlegel MK; Qian K; Sehgal A; Rajeev KG; Jadhav V; Manoharan M; Kuchimanchi S; Maier MA; Milstein S
    Mol Ther; 2018 Mar; 26(3):708-717. PubMed ID: 29456020
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A modular platform for targeted RNAi therapeutics.
    Kedmi R; Veiga N; Ramishetti S; Goldsmith M; Rosenblum D; Dammes N; Hazan-Halevy I; Nahary L; Leviatan-Ben-Arye S; Harlev M; Behlke M; Benhar I; Lieberman J; Peer D
    Nat Nanotechnol; 2018 Mar; 13(3):214-219. PubMed ID: 29379205
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Small-interfering RNAs (siRNAs) as a promising tool for ocular therapy.
    Guzman-Aranguez A; Loma P; Pintor J
    Br J Pharmacol; 2013 Oct; 170(4):730-47. PubMed ID: 23937539
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Where should siRNAs go: applicable organs for siRNA drugs.
    Ahn I; Kang CS; Han J
    Exp Mol Med; 2023 Jul; 55(7):1283-1292. PubMed ID: 37430086
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gene silencing through RNA interference (RNAi) in vivo: strategies based on the direct application of siRNAs.
    Aigner A
    J Biotechnol; 2006 Jun; 124(1):12-25. PubMed ID: 16413079
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gene-silencing potency of symmetric and asymmetric lipid-conjugated siRNAs and its correlation with dicer recognition.
    Kubo T; Yanagihara K; Sato Y; Nishimura Y; Kondo S; Seyama T
    Bioconjug Chem; 2013 Dec; 24(12):2045-57. PubMed ID: 24274056
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.