These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 35654979)

  • 41. Recent advances in siRNA delivery.
    Sarisozen C; Salzano G; Torchilin VP
    Biomol Concepts; 2015 Dec; 6(5-6):321-41. PubMed ID: 26609865
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Rational design of therapeutic siRNAs: minimizing off-targeting potential to improve the safety of RNAi therapy for Huntington's disease.
    Boudreau RL; Spengler RM; Davidson BL
    Mol Ther; 2011 Dec; 19(12):2169-77. PubMed ID: 21952166
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A designed recombinant fusion protein for targeted delivery of siRNA to the mouse brain.
    Haroon MM; Dar GH; Jeyalakshmi D; Venkatraman U; Saba K; Rangaraj N; Patel AB; Gopal V
    J Control Release; 2016 Apr; 228():120-131. PubMed ID: 26948382
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nonviral pulmonary delivery of siRNA.
    Merkel OM; Kissel T
    Acc Chem Res; 2012 Jul; 45(7):961-70. PubMed ID: 21905687
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Molecularly engineered siRNA conjugates for tumor-targeted RNAi therapy.
    Lee JW; Choi J; Choi Y; Kim K; Yang Y; Kim SH; Yoon HY; Kwon IC
    J Control Release; 2022 Nov; 351():713-726. PubMed ID: 36152808
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Designing highly active siRNAs for therapeutic applications.
    Walton SP; Wu M; Gredell JA; Chan C
    FEBS J; 2010 Dec; 277(23):4806-13. PubMed ID: 21078115
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Current issues of RNAi therapeutics delivery and development.
    Haussecker D
    J Control Release; 2014 Dec; 195():49-54. PubMed ID: 25111131
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Development of siRNA Therapeutics for the Treatment of Liver Diseases.
    Holm A; Løvendorf MB; Kauppinen S
    Methods Mol Biol; 2021; 2282():57-75. PubMed ID: 33928570
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Prospects for the potential of RNA interference in the treatment of autoimmune diseases: Small interfering RNAs in the spotlight.
    Gorabi AM; Kiaie N; Aslani S; Jamialahmadi T; Johnston TP; Sahebkar A
    J Autoimmun; 2020 Nov; 114():102529. PubMed ID: 32782117
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Folate Receptor-Mediated siRNA Delivery: Recent Developments and Future Directions for RNAi Therapeutics.
    Gangopadhyay S; Nikam RR; Gore KR
    Nucleic Acid Ther; 2021 Aug; 31(4):245-270. PubMed ID: 33595381
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Hepatic cell-to-cell transmission of small silencing RNA can extend the therapeutic reach of RNA interference (RNAi).
    Pan Q; Ramakrishnaiah V; Henry S; Fouraschen S; de Ruiter PE; Kwekkeboom J; Tilanus HW; Janssen HL; van der Laan LJ
    Gut; 2012 Sep; 61(9):1330-9. PubMed ID: 22198713
    [TBL] [Abstract][Full Text] [Related]  

  • 52. To accelerate the Zika beat: Candidate design for RNA interference-based therapy.
    Giulietti M; Righetti A; Cianfruglia L; Šabanović B; Armeni T; Principato G; Piva F
    Virus Res; 2018 Aug; 255():133-140. PubMed ID: 30031046
    [TBL] [Abstract][Full Text] [Related]  

  • 53. RNA interference (RNAi) in hematology.
    Scherr M; Steinmann D; Eder M
    Ann Hematol; 2004 Jan; 83(1):1-8. PubMed ID: 14574462
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Journey of siRNA: Clinical Developments and Targeted Delivery.
    Nikam RR; Gore KR
    Nucleic Acid Ther; 2018 Aug; 28(4):209-224. PubMed ID: 29584585
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Gel-based application of siRNA to human epithelial cancer cells induces RNAi-dependent apoptosis.
    Jiang M; Rubbi CP; Milner J
    Oligonucleotides; 2004; 14(4):239-48. PubMed ID: 15665592
    [TBL] [Abstract][Full Text] [Related]  

  • 56. RNA interference: from gene silencing to gene-specific therapeutics.
    Leung RK; Whittaker PA
    Pharmacol Ther; 2005 Aug; 107(2):222-39. PubMed ID: 15908010
    [TBL] [Abstract][Full Text] [Related]  

  • 57. RNAi therapeutics: an update on delivery.
    Nguyen T; Menocal EM; Harborth J; Fruehauf JH
    Curr Opin Mol Ther; 2008 Apr; 10(2):158-67. PubMed ID: 18386228
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Systemic delivery of siRNA by aminated poly(α)glutamate for the treatment of solid tumors.
    Polyak D; Krivitsky A; Scomparin A; Eliyahu S; Kalinski H; Avkin-Nachum S; Satchi-Fainaro R
    J Control Release; 2017 Jul; 257():132-143. PubMed ID: 27356019
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Amyloid precursor protein knockdown by siRNA impairs spontaneous alternation in adult mice.
    Senechal Y; Kelly PH; Cryan JF; Natt F; Dev KK
    J Neurochem; 2007 Sep; 102(6):1928-1940. PubMed ID: 17540010
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Emerging Approaches for Enabling RNAi Therapeutics.
    Mallick AM; Tripathi A; Mishra S; Mukherjee A; Dutta C; Chatterjee A; Sinha Roy R
    Chem Asian J; 2022 Aug; 17(16):e202200451. PubMed ID: 35689534
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.