BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 35655006)

  • 1. Low-valent tungsten redox catalysis enables controlled isomerization and carbonylative functionalization of alkenes.
    Jankins TC; Bell WC; Zhang Y; Qin ZY; Chen JS; Gembicky M; Liu P; Engle KM
    Nat Chem; 2022 Jun; 14(6):632-639. PubMed ID: 35655006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-Valent Tungsten Catalysis Enables Site-Selective Isomerization-Hydroboration of Unactivated Alkenes.
    Jankins TC; Martin-Montero R; Cooper P; Martin R; Engle KM
    J Am Chem Soc; 2021 Sep; 143(37):14981-14986. PubMed ID: 34498848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advances in the
    NeveselĂ˝ T; Wienhold M; Molloy JJ; Gilmour R
    Chem Rev; 2022 Jan; 122(2):2650-2694. PubMed ID: 34449198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphabarrelenes as ligands in rhodium-catalyzed hydroformylation of internal alkenes essentially free of alkene isomerization.
    Fuchs E; Keller M; Breit B
    Chemistry; 2006 Sep; 12(26):6930-9. PubMed ID: 16819735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iridium-Catalyzed Regiodivergent and Enantioselective Hydroalkynylation of Unactivated 1,1-Disubstituted Alkenes.
    Wang ZX; Li BJ
    Angew Chem Int Ed Engl; 2022 Apr; 61(18):e202201099. PubMed ID: 35178846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-site programmable functionalization of alkenes via controllable alkene isomerization.
    Wu Z; Meng J; Liu H; Li Y; Zhang X; Zhang W
    Nat Chem; 2023 Jul; 15(7):988-997. PubMed ID: 37202630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanistic interpretation of selective catalytic hydrogenation and isomerization of alkenes and dienes by ligand deactivated Pd nanoparticles.
    Zhu JS; Shon YS
    Nanoscale; 2015 Nov; 7(42):17786-90. PubMed ID: 26455381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ruthenium porphyrin-catalyzed aerobic oxidation of terminal aryl alkenes to aldehydes by a tandem epoxidation-isomerization pathway.
    Jiang G; Chen J; Thu HY; Huang JS; Zhu N; Che CM
    Angew Chem Int Ed Engl; 2008; 47(35):6638-42. PubMed ID: 18651688
    [No Abstract]   [Full Text] [Related]  

  • 9. Catalytic Asymmetric Intermolecular Allylic Functionalization of Unactivated Internal Alkenes.
    Bayeh L; Tambar UK
    ACS Catal; 2017 Dec; 7(12):8533-8543. PubMed ID: 30009088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stereoselective Synthesis of Trisubstituted Alkenes by Nickel-Catalyzed Benzylation and Alkene Isomerization.
    Zhao Y; Liu CF; Lin LQH; Chan ASC; Koh MJ
    Angew Chem Int Ed Engl; 2022 Jun; 61(26):e202202674. PubMed ID: 35388949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. B(C
    Kustiana BA; Elsherbeni SA; Linford-Wood TG; Melen RL; Grayson MN; Morrill LC
    Chemistry; 2022 Nov; 28(63):e202202454. PubMed ID: 35943082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A General Approach to Catalytic Alkene Anti-Markovnikov Hydrofunctionalization Reactions via Acridinium Photoredox Catalysis.
    Margrey KA; Nicewicz DA
    Acc Chem Res; 2016 Sep; 49(9):1997-2006. PubMed ID: 27588818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asymmetric remote C-H borylation of internal alkenes via alkene isomerization.
    Chen X; Cheng Z; Guo J; Lu Z
    Nat Commun; 2018 Sep; 9(1):3939. PubMed ID: 30258070
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A New Paradigm in Pincer Iridium Chemistry: PCN Complexes for (De)Hydrogenation Catalysis and Beyond.
    Wang Y; Huang Z; Liu G; Huang Z
    Acc Chem Res; 2022 Aug; 55(15):2148-2161. PubMed ID: 35852837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Palladium-Catalyzed Inward Isomerization Hydroaminocarbonylation of Alkenes.
    Zou XJ; Jin ZX; Yang HY; Wu F; Ren ZH; Guan ZH
    Angew Chem Int Ed Engl; 2024 Jun; 63(26):e202406226. PubMed ID: 38618886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Z-selective alkene isomerization by high-spin cobalt(II) complexes.
    Chen C; Dugan TR; Brennessel WW; Weix DJ; Holland PL
    J Am Chem Soc; 2014 Jan; 136(3):945-55. PubMed ID: 24386941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mild and selective deuteration and isomerization of alkenes by a bifunctional catalyst and deuterium oxide.
    Erdogan G; Grotjahn DB
    J Am Chem Soc; 2009 Aug; 131(30):10354-5. PubMed ID: 19585995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stereodivergent, Kinetically Controlled Isomerization of Terminal Alkenes via Nickel Catalysis.
    Rubel CZ; Ravn AK; Ho HC; Yang S; Li ZQ; Engle KM; Vantourout JC
    Angew Chem Int Ed Engl; 2024 May; 63(21):e202320081. PubMed ID: 38494945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrophilic Pt(II) complexes: precision instruments for the initiation of transformations mediated by the cation-olefin reaction.
    Felix RJ; Munro-Leighton C; Gagné MR
    Acc Chem Res; 2014 Aug; 47(8):2319-31. PubMed ID: 24845777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequential Alkene Isomerization and Ring-Closing Metathesis in Production of Macrocyclic Musks from Biomass.
    Sytniczuk A; Forcher G; Grotjahn DB; Grela K
    Chemistry; 2018 Jul; 24(41):10403-10408. PubMed ID: 29931831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.