These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 35655017)
41. Prediction of concrete strength using ultrasonic pulse velocity and artificial neural networks. Trtnik G; Kavcic F; Turk G Ultrasonics; 2009 Jan; 49(1):53-60. PubMed ID: 18589471 [TBL] [Abstract][Full Text] [Related]
42. Study of Ultra-High Performance Concrete Mechanical Behavior under High Temperatures. Sumitomo GS; Pimentel LL; Jacintho AEPGA; Forti NCS Materials (Basel); 2024 Aug; 17(17):. PubMed ID: 39274604 [TBL] [Abstract][Full Text] [Related]
43. Effect of Waste Ceramic Powder on the Properties of Alkali-Activated Slag and Fly Ash Pastes Exposed to High Temperature. Zhang GY; Bae SC; Lin RS; Wang XY Polymers (Basel); 2021 Nov; 13(21):. PubMed ID: 34771353 [TBL] [Abstract][Full Text] [Related]
44. Fire-Exposed Fly-Ash-Based Geopolymer Concrete: Effects of Burning Temperature on Mechanical and Microstructural Properties. Razak SNA; Shafiq N; Guillaumat L; Farhan SA; Lohana VK Materials (Basel); 2022 Mar; 15(5):. PubMed ID: 35269114 [TBL] [Abstract][Full Text] [Related]
45. Mechanical Properties and Environmental Evaluation of Ultra-High-Performance Concrete with Aeolian Sand. Chu H; Wang F; Wang L; Feng T; Wang D Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32679724 [TBL] [Abstract][Full Text] [Related]
46. Experimental Study on the Salt Freezing Durability of Multi-Walled Carbon Nanotube Ultra-High-Performance Concrete. Liu G; Zhang H; Liu J; Xu S; Chen Z Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591521 [TBL] [Abstract][Full Text] [Related]
47. Effect of Steel Fibers on Tensile Properties of Ultra-High-Performance Concrete: A Review. Du W; Yu F; Qiu L; Guo Y; Wang J; Han B Materials (Basel); 2024 Feb; 17(5):. PubMed ID: 38473581 [TBL] [Abstract][Full Text] [Related]
48. Effect of Sodium Gluconate on Properties and Microstructure of Ultra-High-Performance Concrete (UHPC). Wu Y; Yuan Y; Niu M; Kuang Y Materials (Basel); 2023 May; 16(9):. PubMed ID: 37176463 [TBL] [Abstract][Full Text] [Related]
49. The influence of nanosunflower ash and nanowalnut shell ash on sustainable lightweight self-compacting concrete characteristics. Hilal N; Hamah Sor N; Hadzima-Nyarko M; Radu D; Tawfik TA Sci Rep; 2024 Apr; 14(1):9450. PubMed ID: 38658797 [TBL] [Abstract][Full Text] [Related]
50. The Influence of Manganese Slag on the Properties of Ultra-High-Performance Concrete. Xu W; Yu J; Wang H Materials (Basel); 2024 Jan; 17(2):. PubMed ID: 38276436 [TBL] [Abstract][Full Text] [Related]
51. Damage and Recovery Behavior of Low-Replacement-Rate Fly Ash Concrete after Different High-Temperature Exposures. Mi L; Kuang B; Fu D; Li L; Liu Y; Wang C; He C; Chen Y; Zhang H; Liu F; Wang Q Materials (Basel); 2024 Aug; 17(17):. PubMed ID: 39274719 [TBL] [Abstract][Full Text] [Related]
52. Assessing the Influence of Banana Leaf Ash as Pozzolanic Material for the Production of Green Concrete: A Mechanical and Microstructural Evaluation. Islam MH; Law DW; Gunasekara C; Sobuz MHR; Rahman MN; Habib MA; Sabbir AK Materials (Basel); 2024 Feb; 17(3):. PubMed ID: 38591588 [TBL] [Abstract][Full Text] [Related]
53. The influence of palm oil fuel ash heat treatment on the strength activity, porosity, and water absorption of cement mortar. Shaladi RJ; Johari MAM; Ahmad ZA; Mijarsh MJA Environ Sci Pollut Res Int; 2022 Oct; 29(48):72493-72514. PubMed ID: 35606591 [TBL] [Abstract][Full Text] [Related]
54. Carbon Emission Optimization of Ultra-High-Performance Concrete Using Machine Learning Methods. Wang M; Du M; Jia Y; Chang C; Zhou S Materials (Basel); 2024 Apr; 17(7):. PubMed ID: 38612182 [TBL] [Abstract][Full Text] [Related]
55. Thermo-mechanical properties and sustainability analysis of newly developed eco-friendly structural foamed concrete by reusing palm oil fuel ash and eggshell powder as supplementary cementitious materials. Jhatial AA; Goh WI; Mastoi AK; Rahman AF; Kamaruddin S Environ Sci Pollut Res Int; 2021 Aug; 28(29):38947-38968. PubMed ID: 33745050 [TBL] [Abstract][Full Text] [Related]
56. Mechanical Properties of Ultra-High Performance Concrete with Coal Gasification Coarse Slag as River Sand Replacement. Zhu Z; Lian X; Zhai X; Li X; Guan M; Wang X Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363145 [TBL] [Abstract][Full Text] [Related]
57. Influence of High Temperature Curing and Surface Humidity on the Tensile Strength of UHPC. Kalthoff M; Raupach M; Matschei T Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361453 [TBL] [Abstract][Full Text] [Related]
58. Investigating Ultrasonic Pulse Velocity Method for Evaluating High-Temperature Properties of Non-Sintered Hwangto-Mixed Concrete as a Cement Replacement Material. Kim W; Choi H; Lee T Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36770109 [TBL] [Abstract][Full Text] [Related]
59. Matrix Optimization of Ultra High Performance Concrete for Improving Strength and Durability. Paredes JA; Gálvez JC; Enfedaque A; Alberti MG Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832346 [TBL] [Abstract][Full Text] [Related]
60. Effect of Polymers on Behavior of Ultra-High-Strength Concrete. Mayhoub OA; Abadel AA; Alharbi YR; Nehdi ML; de Azevedo ARG; Kohail M Polymers (Basel); 2022 Jun; 14(13):. PubMed ID: 35808631 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]