These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 35655090)

  • 1. Light absorption enhancement in thin film GaAs solar cells using dielectric nanoparticles.
    Chaudhry FA; Escandell L; López-Fraguas E; Vergaz R; Sánchez-Pena JM; García-Cámara B
    Sci Rep; 2022 Jun; 12(1):9240. PubMed ID: 35655090
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polycrystalline silicon thin-film solar cells with plasmonic-enhanced light-trapping.
    Varlamov S; Rao J; Soderstrom T
    J Vis Exp; 2012 Jul; (65):. PubMed ID: 22805108
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal structure of light trapping in thin-film solar cells: dielectric nanoparticles or multilayer antireflection coatings?
    Zhao Y; Chen F; Shen Q; Zhang L
    Appl Opt; 2014 Aug; 53(23):5222-9. PubMed ID: 25320932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement in Power Conversion Efficiency of GaAs Solar Cells by Utilizing Gold Nanostar Film for Light-Trapping.
    Zhu SQ; Bian B; Zhu YF; Yang J; Zhang D; Feng L
    Front Chem; 2019; 7():137. PubMed ID: 30941345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational analysis of thin film InGaAs/GaAs quantum well solar cells with back side light trapping structures.
    McPheeters CO; Yu ET
    Opt Express; 2012 Nov; 20(23):A864-78. PubMed ID: 23326834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational analysis of thin film InGaAs/GaAs quantum well solar cells with back side light trapping structures.
    McPheeters CO; Yu ET
    Opt Express; 2012 Nov; 20 Suppl 6():A864-78. PubMed ID: 23187663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Super absorption of solar energy using a plasmonic nanoparticle based CdTe solar cell.
    Rehman Q; Khan AD; Khan AD; Noman M; Ali H; Rauf A; Ahmad MS
    RSC Adv; 2019 Oct; 9(59):34207-34213. PubMed ID: 35530006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmon-Enhanced Sunlight Harvesting in Thin-Film Solar Cell by Randomly Distributed Nanoparticle Array.
    Tharwat MM; Almalki A; Mahros AM
    Materials (Basel); 2021 Mar; 14(6):. PubMed ID: 33809134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced absorption in optically thin solar cells by scattering from embedded dielectric nanoparticles.
    Nagel JR; Scarpulla MA
    Opt Express; 2010 Jun; 18 Suppl 2():A139-46. PubMed ID: 20588582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dielectric Scattering Patterns for Efficient Light Trapping in Thin-Film Solar Cells.
    van Lare C; Lenzmann F; Verschuuren MA; Polman A
    Nano Lett; 2015 Aug; 15(8):4846-52. PubMed ID: 26107806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel back-reflector architecture with nanoparticle based buried light-scattering microstructures for improved solar cell performance.
    Desta D; Ram SK; Rizzoli R; Bellettato M; Summonte C; Jeppesen BR; Jensen PB; Tsao YC; Wiggers H; Pereira RN; Balling P; Larsen AN
    Nanoscale; 2016 Jun; 8(23):12035-46. PubMed ID: 27244247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dielectric core-shell optical antennas for strong solar absorption enhancement.
    Yu Y; Ferry VE; Alivisatos AP; Cao L
    Nano Lett; 2012 Jul; 12(7):3674-81. PubMed ID: 22686287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultra-Lightweight, Flexible InGaP/GaAs Tandem Solar Cells with a Dual-Function Encapsulation Layer.
    Kim TS; Kim HJ; Geum DM; Han JH; Kim IS; Hong N; Ryu GH; Kang J; Choi WJ; Yu KJ
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):13248-13253. PubMed ID: 33691400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanostructures for Light Trapping in Thin Film Solar Cells.
    Peter Amalathas A; Alkaisi MM
    Micromachines (Basel); 2019 Sep; 10(9):. PubMed ID: 31533261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical absorption enhancement in a hybrid system photonic crystal - thin substrate for photovoltaic applications.
    Buencuerpo J; Munioz-Camuniez LE; Dotor ML; Postigo PA
    Opt Express; 2012 Jul; 20 Suppl 4():A452-64. PubMed ID: 22828614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Can plasmonic Al nanoparticles improve absorption in triple junction solar cells?
    Yang L; Pillai S; Green MA
    Sci Rep; 2015 Jul; 5():11852. PubMed ID: 26138405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Double-layer anti-reflection coating containing a nanoporous anodic aluminum oxide layer for GaAs solar cells.
    Yang T; Wang X; Liu W; Shi Y; Yang F
    Opt Express; 2013 Jul; 21(15):18207-15. PubMed ID: 23938691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Paths to light trapping in thin film GaAs solar cells.
    Xiao J; Fang H; Su R; Li K; Song J; Krauss TF; Li J; Martins ER
    Opt Express; 2018 Mar; 26(6):A341-A351. PubMed ID: 29609304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using Spin-Coated Silver Nanoparticles/Zinc Oxide Thin Films to Improve the Efficiency of GaInP/(In)GaAs/Ge Solar Cells.
    Lei PH; Chen IJ; Chen JJ; Yang PC; Gong YH
    Materials (Basel); 2018 Jun; 11(6):. PubMed ID: 29914069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes.
    Akimov YA; Koh WS; Ostrikov K
    Opt Express; 2009 Jun; 17(12):10195-205. PubMed ID: 19506674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.