These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
288 related articles for article (PubMed ID: 35655489)
1. Landslide Susceptibility Evaluation Using Different Slope Units Based on BP Neural Network. Huang J; Zeng X; Ding L; Yin Y; Li Y Comput Intell Neurosci; 2022; 2022():9923775. PubMed ID: 35655489 [TBL] [Abstract][Full Text] [Related]
2. Comparison of Random Forest Model and Frequency Ratio Model for Landslide Susceptibility Mapping (LSM) in Yunyang County (Chongqing, China). Wang Y; Sun D; Wen H; Zhang H; Zhang F Int J Environ Res Public Health; 2020 Jun; 17(12):. PubMed ID: 32545618 [TBL] [Abstract][Full Text] [Related]
3. Slide type landslide susceptibility assessment of the Büyük Menderes watershed using artificial neural network method. Tekin S; Çan T Environ Sci Pollut Res Int; 2022 Jul; 29(31):47174-47188. PubMed ID: 35178630 [TBL] [Abstract][Full Text] [Related]
4. Optimizing the Predictive Ability of Machine Learning Methods for Landslide Susceptibility Mapping Using SMOTE for Lishui City in Zhejiang Province, China. Wang Y; Wu X; Chen Z; Ren F; Feng L; Du Q Int J Environ Res Public Health; 2019 Jan; 16(3):. PubMed ID: 30696105 [TBL] [Abstract][Full Text] [Related]
5. Integration of Spatial Probability and Size in Slope-Unit-Based Landslide Susceptibility Assessment: A Case Study. Li L; Lan H Int J Environ Res Public Health; 2020 Nov; 17(21):. PubMed ID: 33139639 [TBL] [Abstract][Full Text] [Related]
6. Landslide susceptibility mapping by integrating analytical hierarchy process, frequency ratio, and fuzzy gamma operator models, case study: North of Lorestan Province, Iran. Eitvandi N; Sarikhani R; Derikvand S Environ Monit Assess; 2022 Jul; 194(9):600. PubMed ID: 35864313 [TBL] [Abstract][Full Text] [Related]
7. A new combined approach of neural-metaheuristic algorithms for predicting and appraisal of landslide susceptibility mapping. Moayedi H; Dehrashid AA Environ Sci Pollut Res Int; 2023 Jul; 30(34):82964-82989. PubMed ID: 37336850 [TBL] [Abstract][Full Text] [Related]
8. Convolutional neural network (CNN) with metaheuristic optimization algorithms for landslide susceptibility mapping in Icheon, South Korea. Hakim WL; Rezaie F; Nur AS; Panahi M; Khosravi K; Lee CW; Lee S J Environ Manage; 2022 Mar; 305():114367. PubMed ID: 34968941 [TBL] [Abstract][Full Text] [Related]
9. Exploring machine learning and statistical approach techniques for landslide susceptibility mapping in Siwalik Himalayan Region using geospatial technology. Saha A; Tripathi L; Villuri VGK; Bhardwaj A Environ Sci Pollut Res Int; 2024 Feb; 31(7):10443-10459. PubMed ID: 38198087 [TBL] [Abstract][Full Text] [Related]
10. GIS-based landslide susceptibility mapping using heuristic and bivariate statistical methods for Iva Valley and environs Southeast Nigeria. Ozioko OH; Igwe O Environ Monit Assess; 2020 Jan; 192(2):119. PubMed ID: 31950278 [TBL] [Abstract][Full Text] [Related]
11. Determination of landslide susceptibility with Analytic Hierarchy Process (AHP) and the role of forest ecosystem services on landslide susceptibility. Aksoy H Environ Monit Assess; 2023 Nov; 195(12):1525. PubMed ID: 37994954 [TBL] [Abstract][Full Text] [Related]
12. A Robust Deep-Learning Model for Landslide Susceptibility Mapping: A Case Study of Kurdistan Province, Iran. Ghasemian B; Shahabi H; Shirzadi A; Al-Ansari N; Jaafari A; Kress VR; Geertsema M; Renoud S; Ahmad A Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214473 [TBL] [Abstract][Full Text] [Related]
13. Development of landslide susceptibility maps of Tripura, India using GIS and analytical hierarchy process (AHP). Nath NK; Gautam VK; Pande CB; Mishra LR; Raju JT; Moharir KN; Rane NL Environ Sci Pollut Res Int; 2024 Jan; 31(5):7481-7497. PubMed ID: 38159190 [TBL] [Abstract][Full Text] [Related]
14. GIS-based landslide susceptibility zonation mapping using the analytic hierarchy process (AHP) method in parts of Kalimpong Region of Darjeeling Himalaya. Das S; Sarkar S; Kanungo DP Environ Monit Assess; 2022 Mar; 194(3):234. PubMed ID: 35229227 [TBL] [Abstract][Full Text] [Related]
15. Mine landslide susceptibility assessment using IVM, ANN and SVM models considering the contribution of affecting factors. Luo X; Lin F; Zhu S; Yu M; Zhang Z; Meng L; Peng J PLoS One; 2019; 14(4):e0215134. PubMed ID: 30973936 [TBL] [Abstract][Full Text] [Related]
16. The Influence of Different Knowledge-Driven Methods on Landslide Susceptibility Mapping: A Case Study in the Changbai Mountain Area, Northeast China. Ma Z; Qin S; Cao C; Lv J; Li G; Qiao S; Hu X Entropy (Basel); 2019 Apr; 21(4):. PubMed ID: 33267086 [TBL] [Abstract][Full Text] [Related]
17. Game-theoretic optimization of landslide susceptibility mapping: a comparative study between Bayesian-optimized basic neural network and new generation neural network models. Mallick J; Alkahtani M; Hang HT; Singh CK Environ Sci Pollut Res Int; 2024 Apr; 31(20):29811-29835. PubMed ID: 38592629 [TBL] [Abstract][Full Text] [Related]
18. Effects of land-use changes on landslides in a landslide-prone area (Ardesen, Rize, NE Turkey). Karsli F; Atasoy M; Yalcin A; Reis S; Demir O; Gokceoglu C Environ Monit Assess; 2009 Sep; 156(1-4):241-55. PubMed ID: 18780152 [TBL] [Abstract][Full Text] [Related]
19. Automated Landslide-Risk Prediction Using Web GIS and Machine Learning Models. Tengtrairat N; Woo WL; Parathai P; Aryupong C; Jitsangiam P; Rinchumphu D Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34283153 [TBL] [Abstract][Full Text] [Related]
20. A novel evolutionary combination of artificial intelligence algorithm and machine learning for landslide susceptibility mapping in the west of Iran. Shen Y; Ahmadi Dehrashid A; Bahar RA; Moayedi H; Nasrollahizadeh B Environ Sci Pollut Res Int; 2023 Dec; 30(59):123527-123555. PubMed ID: 37987977 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]