These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 35655863)

  • 1. Direct measurement of the genuine efficiency of thermogalvanic heat-to-electricity conversion in thermocells.
    Trosheva MA; Buckingham MA; Aldous L
    Chem Sci; 2022 May; 13(17):4984-4998. PubMed ID: 35655863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quasi-solid-State Electrolytes for Low-Grade Thermal Energy Harvesting using a Cobalt Redox Couple.
    Taheri A; MacFarlane DR; Pozo-Gonzalo C; Pringle JM
    ChemSusChem; 2018 Aug; 11(16):2788-2796. PubMed ID: 29873193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strong Tough Thermogalvanic Hydrogel Thermocell With Extraordinarily High Thermoelectric Performance.
    Liu L; Zhang D; Bai P; Mao Y; Li Q; Guo J; Fang Y; Ma R
    Adv Mater; 2023 Aug; 35(32):e2300696. PubMed ID: 37222174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermo-electrochemical cells for waste heat harvesting - progress and perspectives.
    Dupont MF; MacFarlane DR; Pringle JM
    Chem Commun (Camb); 2017 Jun; 53(47):6288-6302. PubMed ID: 28534592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Short-Circuit Current in Polymeric Membrane-Based Thermocells: An Experimental Study.
    Barragán VM
    Membranes (Basel); 2021 Jun; 11(7):. PubMed ID: 34203522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-assembled monolayers for electrostatic electrocatalysis and enhanced electrode stability in thermogalvanic cells.
    Laws K; Buckingham MA; Aldous L
    Chem Sci; 2024 May; 15(18):6958-6964. PubMed ID: 38725507
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-Grade Thermal Energy Harvesting and Self-Powered Sensing Based on Thermogalvanic Hydrogels.
    Zhang J; Bai C; Wang Z; Liu X; Li X; Cui X
    Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Electricity-Generating Window Made of a Transparent Energy Harvester of Thermocells.
    Lee JH; Shin G; Baek JY; Kang TJ
    ACS Appl Mater Interfaces; 2021 May; 13(18):21157-21165. PubMed ID: 33793183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermosensitive crystallization-boosted liquid thermocells for low-grade heat harvesting.
    Yu B; Duan J; Cong H; Xie W; Liu R; Zhuang X; Wang H; Qi B; Xu M; Wang ZL; Zhou J
    Science; 2020 Oct; 370(6514):342-346. PubMed ID: 32913001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Harvesting waste thermal energy using a carbon-nanotube-based thermo-electrochemical cell.
    Hu R; Cola BA; Haram N; Barisci JN; Lee S; Stoughton S; Wallace G; Too C; Thomas M; Gestos A; Cruz ME; Ferraris JP; Zakhidov AA; Baughman RH
    Nano Lett; 2010 Mar; 10(3):838-46. PubMed ID: 20170193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chaotropic Effect-Boosted Thermogalvanic Ionogel Thermocells for All-Weather Power Generation.
    Yang M; Hu Y; Wang X; Chen H; Yu J; Li W; Li R; Yan F
    Adv Mater; 2024 Apr; 36(16):e2312249. PubMed ID: 38193634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct thermal charging cell for converting low-grade heat to electricity.
    Wang X; Huang YT; Liu C; Mu K; Li KH; Wang S; Yang Y; Wang L; Su CH; Feng SP
    Nat Commun; 2019 Sep; 10(1):4151. PubMed ID: 31515483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polymer Gel with Tunable Conductive Properties: A Material for Thermal Energy Harvesting.
    Vaganova E; Eliaz D; Leitus G; Solomonov A; Dubnikova F; Feldman Y; Rosenhek-Goldian I; Cohen SR; Shimanovich U
    ACS Omega; 2022 Dec; 7(51):47747-47754. PubMed ID: 36591209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-efficiency electrochemical thermal energy harvester using carbon nanotube aerogel sheet electrodes.
    Im H; Kim T; Song H; Choi J; Park JS; Ovalle-Robles R; Yang HD; Kihm KD; Baughman RH; Lee HH; Kang TJ; Kim YH
    Nat Commun; 2016 Feb; 7():10600. PubMed ID: 26837457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An electrochemical system for efficiently harvesting low-grade heat energy.
    Lee SW; Yang Y; Lee HW; Ghasemi H; Kraemer D; Chen G; Cui Y
    Nat Commun; 2014 May; 5():3942. PubMed ID: 24845707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wearable Thermocells Based on Gel Electrolytes for the Utilization of Body Heat.
    Yang P; Liu K; Chen Q; Mo X; Zhou Y; Li S; Feng G; Zhou J
    Angew Chem Int Ed Engl; 2016 Sep; 55(39):12050-3. PubMed ID: 27557890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergistic Anisotropic Network and Hierarchical Electrodes Endow Cost-Effective N-Type Quasi-Solid State Thermocell with Boosted Electricity Production.
    Meng H; Gao W; Chen Y
    Small; 2024 Jul; 20(28):e2310777. PubMed ID: 38299481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iron (II/III) perchlorate electrolytes for electrochemically harvesting low-grade thermal energy.
    Kim JH; Lee JH; Palem RR; Suh MS; Lee HH; Kang TJ
    Sci Rep; 2019 Jun; 9(1):8706. PubMed ID: 31213633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulating Thermogalvanic Effect and Mechanical Robustness via Redox Ions for Flexible Quasi-Solid-State Thermocells.
    Peng P; Zhou J; Liang L; Huang X; Lv H; Liu Z; Chen G
    Nanomicro Lett; 2022 Mar; 14(1):81. PubMed ID: 35333992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly Antifreezing Thermogalvanic Hydrogels for Human Heat Harvesting in Ultralow Temperature Environments.
    Zhang D; Zhou Y; Mao Y; Li Q; Liu L; Bai P; Ma R
    Nano Lett; 2023 Dec; 23(23):11272-11279. PubMed ID: 38038230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.