These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 35655902)

  • 21. Rogue waves and instability arising from long-wave-short-wave resonance beyond the integrable regime.
    Sun WR; Malomed BA; Li JH
    Phys Rev E; 2024 Feb; 109(2-1):024209. PubMed ID: 38491594
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modulation stability analysis of exact multidimensional solutions to the generalized nonlinear Schrödinger equation and the Gross-Pitaevskii equation using a variational approach.
    Petrović NZ; Aleksić NB; Belić M
    Opt Express; 2015 Apr; 23(8):10616-30. PubMed ID: 25969101
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exact traveling wave solutions of modified KdV-Zakharov-Kuznetsov equation and viscous Burgers equation.
    Islam MH; Khan K; Akbar MA; Salam MA
    Springerplus; 2014; 3():105. PubMed ID: 24616841
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamical systems theory for the Gardner equation.
    Saha A; Talukdar B; Chatterjee S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):023204. PubMed ID: 25353592
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nonlinear modulation of periodic waves in the cylindrical Gardner equation.
    Aslanova G; Ahmetolan S; Demirci A
    Phys Rev E; 2020 Nov; 102(5-1):052215. PubMed ID: 33327160
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Exact traveling wave solutions of the KP-BBM equation by using the new approach of generalized (G'/G)-expansion method.
    Alam MN; Akbar MA
    Springerplus; 2013; 2():617. PubMed ID: 24307985
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bright and dark rogue internal waves: The Gardner equation approach.
    Bokaeeyan M; Ankiewicz A; Akhmediev N
    Phys Rev E; 2019 Jun; 99(6-1):062224. PubMed ID: 31330713
    [TBL] [Abstract][Full Text] [Related]  

  • 28. On the integrable elliptic cylindrical Kadomtsev-Petviashvili equation.
    Khusnutdinova KR; Klein C; Matveev VB; Smirnov AO
    Chaos; 2013 Mar; 23(1):013126. PubMed ID: 23556963
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dynamics of kink, antikink, bright, generalized Jacobi elliptic function solutions of matter-wave condensates with time-dependent two- and three-body interactions.
    Belobo Belobo D; Ben-Bolie GH; Kofane TC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):042902. PubMed ID: 25974557
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nonlinear ion-acoustic cnoidal waves in a dense relativistic degenerate magnetoplasma.
    El-Shamy EF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):033105. PubMed ID: 25871222
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Orthogonal cubic splines for the numerical solution of nonlinear parabolic partial differential equations.
    Alavi J; Aminikhah H
    MethodsX; 2023; 10():102190. PubMed ID: 37168771
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Localized waves in nonlinear oscillator chains.
    Iooss G; James G
    Chaos; 2005 Mar; 15(1):15113. PubMed ID: 15836290
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A new implementation of a novel analytical method for finding the analytical solutions of the (2+1)-dimensional KP-BBM equation.
    Mia R; Mamun Miah M; Osman MS
    Heliyon; 2023 May; 9(5):e15690. PubMed ID: 37144200
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Analytical approximations for spiral waves.
    Löber J; Engel H
    Chaos; 2013 Dec; 23(4):043135. PubMed ID: 24387574
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stationary solutions for the 1+1 nonlinear Schrödinger equation modeling repulsive Bose-Einstein condensates in small potentials.
    Mallory K; Van Gorder RA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):013205. PubMed ID: 23944574
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Solitary waves in a nonintegrable chain with double-well potentials.
    Katz S; Givli S
    Phys Rev E; 2019 Sep; 100(3-1):032209. PubMed ID: 31639911
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Kernel-free Boundary Integral Method for Elliptic Boundary Value Problems.
    Ying W; Henriquez CS
    J Comput Phys; 2007 Dec; 227(2):1046-1074. PubMed ID: 23519600
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Exact stationary solutions of the parametrically driven and damped nonlinear Dirac equation.
    Quintero NR; Sánchez-Rey B
    Chaos; 2019 Sep; 29(9):093129. PubMed ID: 31575121
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multibunch solutions of the differential-difference equation for traffic flow.
    Nakanishi K
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Sep; 62(3 Pt A):3349-55. PubMed ID: 11088834
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterizing traveling-wave collisions in granular chains starting from integrable limits: the case of the Korteweg-de Vries equation and the Toda lattice.
    Shen Y; Kevrekidis PG; Sen S; Hoffman A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022905. PubMed ID: 25215797
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.