These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
414 related articles for article (PubMed ID: 35656197)
1. Stem Cell-Laden Hydrogel-Based 3D Bioprinting for Bone and Cartilage Tissue Engineering. Yang Z; Yi P; Liu Z; Zhang W; Mei L; Feng C; Tu C; Li Z Front Bioeng Biotechnol; 2022; 10():865770. PubMed ID: 35656197 [TBL] [Abstract][Full Text] [Related]
2. Cell-laden hydrogels for osteochondral and cartilage tissue engineering. Yang J; Zhang YS; Yue K; Khademhosseini A Acta Biomater; 2017 Jul; 57():1-25. PubMed ID: 28088667 [TBL] [Abstract][Full Text] [Related]
3. Bio-inspired hydrogel composed of hyaluronic acid and alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs. Antich C; de Vicente J; Jiménez G; Chocarro C; Carrillo E; Montañez E; Gálvez-Martín P; Marchal JA Acta Biomater; 2020 Apr; 106():114-123. PubMed ID: 32027992 [TBL] [Abstract][Full Text] [Related]
4. The bio in the ink: cartilage regeneration with bioprintable hydrogels and articular cartilage-derived progenitor cells. Levato R; Webb WR; Otto IA; Mensinga A; Zhang Y; van Rijen M; van Weeren R; Khan IM; Malda J Acta Biomater; 2017 Oct; 61():41-53. PubMed ID: 28782725 [TBL] [Abstract][Full Text] [Related]
5. Nanocomposite bioinks for 3D bioprinting. Cai Y; Chang SY; Gan SW; Ma S; Lu WF; Yen CC Acta Biomater; 2022 Oct; 151():45-69. PubMed ID: 35970479 [TBL] [Abstract][Full Text] [Related]
6. Generating adipose stem cell-laden hyaluronic acid-based scaffolds using 3D bioprinting via the double crosslinked strategy for chondrogenesis. Nedunchezian S; Banerjee P; Lee CY; Lee SS; Lin CW; Wu CW; Wu SC; Chang JK; Wang CK Mater Sci Eng C Mater Biol Appl; 2021 May; 124():112072. PubMed ID: 33947564 [TBL] [Abstract][Full Text] [Related]
7. Extracellular Matrix/Amorphous Magnesium Phosphate Bioink for 3D Bioprinting of Craniomaxillofacial Bone Tissue. Dubey N; Ferreira JA; Malda J; Bhaduri SB; Bottino MC ACS Appl Mater Interfaces; 2020 May; 12(21):23752-23763. PubMed ID: 32352748 [TBL] [Abstract][Full Text] [Related]
8. 3D-bioprinted functional and biomimetic hydrogel scaffolds incorporated with nanosilicates to promote bone healing in rat calvarial defect model. Liu B; Li J; Lei X; Cheng P; Song Y; Gao Y; Hu J; Wang C; Zhang S; Li D; Wu H; Sang H; Bi L; Pei G Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110905. PubMed ID: 32409059 [TBL] [Abstract][Full Text] [Related]
9. Application of Extrusion-Based Hydrogel Bioprinting for Cartilage Tissue Engineering. You F; Eames BF; Chen X Int J Mol Sci; 2017 Jul; 18(7):. PubMed ID: 28737701 [TBL] [Abstract][Full Text] [Related]
10. Optimization of mechanical stiffness and cell density of 3D bioprinted cell-laden scaffolds improves extracellular matrix mineralization and cellular organization for bone tissue engineering. Zhang J; Wehrle E; Adamek P; Paul GR; Qin XH; Rubert M; Müller R Acta Biomater; 2020 Sep; 114():307-322. PubMed ID: 32673752 [TBL] [Abstract][Full Text] [Related]
11. 3D bioprinting for engineering complex tissues. Mandrycky C; Wang Z; Kim K; Kim DH Biotechnol Adv; 2016; 34(4):422-434. PubMed ID: 26724184 [TBL] [Abstract][Full Text] [Related]
12. 3D bioprinting mesenchymal stem cell-laden construct with core-shell nanospheres for cartilage tissue engineering. Zhu W; Cui H; Boualam B; Masood F; Flynn E; Rao RD; Zhang ZY; Zhang LG Nanotechnology; 2018 May; 29(18):185101. PubMed ID: 29446757 [TBL] [Abstract][Full Text] [Related]
13. 3D-bioprinting a genetically inspired cartilage scaffold with GDF5-conjugated BMSC-laden hydrogel and polymer for cartilage repair. Sun Y; You Y; Jiang W; Zhai Z; Dai K Theranostics; 2019; 9(23):6949-6961. PubMed ID: 31660079 [No Abstract] [Full Text] [Related]
15. A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage. Daly AC; Critchley SE; Rencsok EM; Kelly DJ Biofabrication; 2016 Oct; 8(4):045002. PubMed ID: 27716628 [TBL] [Abstract][Full Text] [Related]
16. 3D Bioprinting of a Bioactive Composite Scaffold for Cell Delivery in Periodontal Tissue Regeneration. Miao G; Liang L; Li W; Ma C; Pan Y; Zhao H; Zhang Q; Xiao Y; Yang X Biomolecules; 2023 Jun; 13(7):. PubMed ID: 37509098 [TBL] [Abstract][Full Text] [Related]
17. Bioprinted biomimetic hydrogel matrices guiding stem cell aggregates for enhanced chondrogenesis and cartilage regeneration. Liu Y; Du L; Zhang H; Li G; Luo Y; Hu Z; Xu R; Yao J; Shi Z; Chen Y; Zhang C; Jin Z; Zhang C; Xie C; Fu J; Zhu Y; Zhu Y J Mater Chem B; 2024 Jun; 12(22):5360-5376. PubMed ID: 38700242 [TBL] [Abstract][Full Text] [Related]
18. Combining multi-scale 3D printing technologies to engineer reinforced hydrogel-ceramic interfaces. Diloksumpan P; de Ruijter M; Castilho M; Gbureck U; Vermonden T; van Weeren PR; Malda J; Levato R Biofabrication; 2020 Feb; 12(2):025014. PubMed ID: 31918421 [TBL] [Abstract][Full Text] [Related]
19. Dynamic hyaluronic acid hydrogel with covalent linked gelatin as an anti-oxidative bioink for cartilage tissue engineering. Shi W; Fang F; Kong Y; Greer SE; Kuss M; Liu B; Xue W; Jiang X; Lovell P; Mohs AM; Dudley AT; Li T; Duan B Biofabrication; 2021 Dec; 14(1):. PubMed ID: 34905737 [TBL] [Abstract][Full Text] [Related]
20. Hydrogel-Based 3D Bioprinting Technology for Articular Cartilage Regenerative Engineering. Zhang H; Zhou Z; Zhang F; Wan C Gels; 2024 Jun; 10(7):. PubMed ID: 39057453 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]