These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
414 related articles for article (PubMed ID: 35656197)
21. Advancing bioinks for 3D bioprinting using reactive fillers: A review. Heid S; Boccaccini AR Acta Biomater; 2020 Sep; 113():1-22. PubMed ID: 32622053 [TBL] [Abstract][Full Text] [Related]
22. Bioprinting of a Cell-Laden Conductive Hydrogel Composite. Spencer AR; Shirzaei Sani E; Soucy JR; Corbet CC; Primbetova A; Koppes RA; Annabi N ACS Appl Mater Interfaces; 2019 Aug; 11(34):30518-30533. PubMed ID: 31373791 [TBL] [Abstract][Full Text] [Related]
23. 3D bioprinting of urethra with PCL/PLCL blend and dual autologous cells in fibrin hydrogel: An in vitro evaluation of biomimetic mechanical property and cell growth environment. Zhang K; Fu Q; Yoo J; Chen X; Chandra P; Mo X; Song L; Atala A; Zhao W Acta Biomater; 2017 Mar; 50():154-164. PubMed ID: 27940192 [TBL] [Abstract][Full Text] [Related]
24. 3D bioprinting of a stem cell-laden, multi-material tubular composite: An approach for spinal cord repair. Hamid OA; Eltaher HM; Sottile V; Yang J Mater Sci Eng C Mater Biol Appl; 2021 Jan; 120():111707. PubMed ID: 33545866 [TBL] [Abstract][Full Text] [Related]
25. Controllable fabrication of hydroxybutyl chitosan/oxidized chondroitin sulfate hydrogels by 3D bioprinting technique for cartilage tissue engineering. Li C; Wang K; Zhou X; Li T; Xu Y; Qiang L; Peng M; Xu Y; Xie L; He C; Wang B; Wang J Biomed Mater; 2019 Jan; 14(2):025006. PubMed ID: 30557856 [TBL] [Abstract][Full Text] [Related]
26. Nanoengineered Osteoinductive Bioink for 3D Bioprinting Bone Tissue. Chimene D; Miller L; Cross LM; Jaiswal MK; Singh I; Gaharwar AK ACS Appl Mater Interfaces; 2020 Apr; 12(14):15976-15988. PubMed ID: 32091189 [TBL] [Abstract][Full Text] [Related]
27. Advances in Extrusion 3D Bioprinting: A Focus on Multicomponent Hydrogel-Based Bioinks. Cui X; Li J; Hartanto Y; Durham M; Tang J; Zhang H; Hooper G; Lim K; Woodfield T Adv Healthc Mater; 2020 Aug; 9(15):e1901648. PubMed ID: 32352649 [TBL] [Abstract][Full Text] [Related]
28. Bioprinted anisotropic scaffolds with fast stress relaxation bioink for engineering 3D skeletal muscle and repairing volumetric muscle loss. Li T; Hou J; Wang L; Zeng G; Wang Z; Yu L; Yang Q; Yin J; Long M; Chen L; Chen S; Zhang H; Li Y; Wu Y; Huang W Acta Biomater; 2023 Jan; 156():21-36. PubMed ID: 36002128 [TBL] [Abstract][Full Text] [Related]
29. 3D bioprinting by reinforced bioink based on photocurable interpenetrating networks for cartilage tissue engineering. Shen J; Song W; Liu J; Peng X; Tan Z; Xu Y; Liu S; Ren L Int J Biol Macromol; 2024 Jan; 254(Pt 1):127671. PubMed ID: 37884244 [TBL] [Abstract][Full Text] [Related]
31. 3D bioprinting of tyramine modified hydrogels under visible light for osteochondral interface. Senturk E; Bilici C; Afghah F; Khan Z; Celik S; Wu C; Koc B Biofabrication; 2023 Jun; 15(3):. PubMed ID: 37201519 [TBL] [Abstract][Full Text] [Related]
32. Inhibited astrocytic differentiation in neural stem cell-laden 3D bioprinted conductive composite hydrogel scaffolds for repair of spinal cord injury. Song S; Li Y; Huang J; Cheng S; Zhang Z Biomater Adv; 2023 May; 148():213385. PubMed ID: 36934714 [TBL] [Abstract][Full Text] [Related]
33. Hydrogel-Based 3D Bioprinting for Bone and Cartilage Tissue Engineering. Abdollahiyan P; Oroojalian F; Mokhtarzadeh A; de la Guardia M Biotechnol J; 2020 Dec; 15(12):e2000095. PubMed ID: 32869529 [TBL] [Abstract][Full Text] [Related]
34. 3D bioprinting of photo-crosslinkable silk methacrylate (SilMA)-polyethylene glycol diacrylate (PEGDA) bioink for cartilage tissue engineering. Bandyopadhyay A; Mandal BB; Bhardwaj N J Biomed Mater Res A; 2022 Apr; 110(4):884-898. PubMed ID: 34913587 [TBL] [Abstract][Full Text] [Related]
35. Impact of Hydrogel Stiffness on Differentiation of Human Adipose-Derived Stem Cell Microspheroids. Žigon-Branc S; Markovic M; Van Hoorick J; Van Vlierberghe S; Dubruel P; Zerobin E; Baudis S; Ovsianikov A Tissue Eng Part A; 2019 Oct; 25(19-20):1369-1380. PubMed ID: 30632465 [TBL] [Abstract][Full Text] [Related]
36. Synergistic interplay between human MSCs and HUVECs in 3D spheroids laden in collagen/fibrin hydrogels for bone tissue engineering. Heo DN; Hospodiuk M; Ozbolat IT Acta Biomater; 2019 Sep; 95():348-356. PubMed ID: 30831326 [TBL] [Abstract][Full Text] [Related]
37. Biofabrication of tissue constructs by 3D bioprinting of cell-laden microcarriers. Levato R; Visser J; Planell JA; Engel E; Malda J; Mateos-Timoneda MA Biofabrication; 2014 Sep; 6(3):035020. PubMed ID: 25048797 [TBL] [Abstract][Full Text] [Related]
38. 3D bioprinting of hydrogel-based biomimetic microenvironments. Luo Y; Wei X; Huang P J Biomed Mater Res B Appl Biomater; 2019 Jul; 107(5):1695-1705. PubMed ID: 30508322 [TBL] [Abstract][Full Text] [Related]
39. 3D Bioprinting Photo-Crosslinkable Hydrogels for Bone and Cartilage Repair. Mei Q; Rao J; Bei HP; Liu Y; Zhao X Int J Bioprint; 2021; 7(3):367. PubMed ID: 34286152 [TBL] [Abstract][Full Text] [Related]
40. 3D bioprinting of hydrogel constructs with cell and material gradients for the regeneration of full-thickness chondral defect using a microfluidic printing head. Idaszek J; Costantini M; Karlsen TA; Jaroszewicz J; Colosi C; Testa S; Fornetti E; Bernardini S; Seta M; Kasarełło K; Wrzesień R; Cannata S; Barbetta A; Gargioli C; Brinchman JE; Święszkowski W Biofabrication; 2019 Jul; 11(4):044101. PubMed ID: 31151123 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]